Выделение из организма конечных продуктов обмена. Тема система органов выделения конечных продуктов обмена и выведения их из организма наружу

ПОЧКИ И ИХ ФУНКЦИИ

Процесс выделения имеет важнейшее значение для гомеостаза, он обеспечивает освобождение организма от конечных продуктов обмена, которые уже не могут быть использованы, чужеродных и токсичных веществ, а также избытка воды, солей и органических соединений, поступивших с пищей или образовавшихся в результате обмена веществ (метаболизма). В процессе выделения у человека участвуют почки, легкие, кожа, пищеварительный тракт.

Органы выделения. Основное назначение органов выделения состоит в поддержании постоянства состава и объема жидкостей внутренней среды организма, прежде всего крови.

Почки удаляют избыток воды, неорганических и органических веществ, конечные продукты обмена и чужеродные вещества. Легкие выводят из организма СO2, воду, некоторые летучие вещества, например пары эфира и хлороформа при наркозе, пары алкоголя при опьянении. Слюнные и желудочные железы выделяют тяжелые металлы, ряд лекарственных препаратов (морфий, хинин, салицилаты) и чужеродных органических соединений. Экскреторную функцию выполняет печень, удаляя из крови ряд продуктов азотистого обмена. Поджелудочная железа и кишечные железы экскретируют тяжелые металлы, лекарственные вещества.

Железы кожи играют существенную роль в выделении. С потом из организма выводятся вода и соли, некоторые органические вещества, в частности мочевина, а при напряженной мышечной работе - молочная кислота (см. главу И). Продукты выделения сальных и молочных желез - кожное сало и молоко имеют самостоятельное физиологическое значение - молоко как продукт питания для новорожденных, а кожное сало - для смазывания кожи.

Почки выполняют ряд гомеостатических функций в организме человека и высших животных. К функциям почек относятся следующие: 1) участие в регуляции объема крови и внеклеточной жидкости (волюморегуляция); 2) регуляция концентрации осмотически активных веществ в крови и других жидкостях тела (осморегуляция); 3) регуляция ионного состава сыворотки крови и ионного баланса организма {ионная регуляция); 4) участие в регуляции кислотно-основного состояния {стабилизация рН крови)", 5) участие в регуляции артериального давления, эритропоэза, свертывания крови, модуляции действия гормонов благодаря образованию и выделению в кровь биологически активных веществ (инкреторная функция); 6) участие в обмене белков, липидов и углеводов (метаболическая функция); 7) выделение из организма конечных продуктов азотистого обмена и чужеродных веществ, избытка органических веществ (глюкоза, аминокислоты и др.), поступивших с пищей или образовавшихся в процессе метаболизма (экскреторная функция). Таким образом, роль почки в организме не ограничивается только выделением конечных продуктов обмена и избытка неорганических и органических веществ. Почка является гомеостатическим органом, участвующим в поддержании постоянства основных физико-химических констант жидкостей внутренней среды, в циркуляторном гомеостазе, стабилизации показателей обмена различных органических веществ.

При изучении работы почки следует разграничить два понятия - функции почки и процессы, их обеспечивающие. К последним относятся ультрафильтрация жидкости в клубочках, реабсорбция и секреция веществ в канальцах, синтез новых соединений, в том числе и биологически активных веществ (рис. 12.1).

В литературе при описании деятельности почки используют термин «секреция», который имеет ряд значений. В одних случаях этот термин означает перенос вещества клетками нефрона из крови в просвет канальца в неизмененном виде, что обусловливает экскрецию этого вещества почкой. В других случаях термин «секреция» означает синтез и секрецию клетками в почке биологически активных веществ (например, ренина, простагландинов) и их поступление в русло крови. Наконец, процесс синтеза в клетках канальцев веществ, которые поступают в просвет канальца и экскретируются с мочой, также обозначают термином «секреция».

Пути выделения продуктов обмена веществ

В результате обмена веществ образуются более простые конечные продукты: вода, углекислый газ, мочевина, мочевая кислота и др. Они, а также избыток минеральных солей удаляются из организма. Углекислый газ и некоторое количество воды (около 400 мл в сутки) в виде пара выводится через легкие. Основное количество воды (около 2 л) с растворенными в ней мочевиной, хлористым натрием и другими неорганическими солями выводится через почки и в меньшем количестве через потовые железы кожи. Функцию выделения до некоторой степени выполняет и печень. Соли тяжелых металлов (меди, свинца), которые случайно попали с пищей в кишечник и являются сильными ядами, в также продукты гниения всасываются из кишечника в кровь и поступают в печень. Здесь они обезвреживаются - соединяются с органическими веществами, теряя при этом токсичность и способность всасываться в кровь, - и с желчью выводятся через кишечник. Таким образом, благодаря деятельности почек, печени, кишечника, легких и кожи из организма удаляются конечные продукты диссимиляции, вредные вещества, избыток воды и неорганических веществ и поддерживается постоянство внутренней среды.

Строение и работа мочевыделительной системы

Мочевыделительная система состоит из почек, мочеточников, по которым моча постоянно оттекает из почек, мочевого пузыря, где она собирается, и мочеиспускательного канала, по которому моча выводится наружу при сокращении мускулатуры стенок мочевого пузыря.

Почки - один из важнейших органов, основная задача которого заключается в поддержании постоянства внутренней среды организма. Почки участвуют в регуляции водно-электролитного баланса, поддержании кислотно-основного состояния, выделении азотистых шлаков, поддержания осмотического давления жидкостей организма, регуляции кровяного давления, стимуляции эритропоэза и т. д. Масса обеих почек у взрослого человека около 300 г.

Почки - парный орган бобовидной формы - расположены на внутренней поверхности задней стенки брюшной полости на уровне поясницы. К почкам подходят почечные артерии и нервы, а отходят от них мочеточники и вены. Ткань почки можно разделить на две зоны: внешнюю (корковую) красно-коричневого цвета и внутреннюю (мозговую), имеющую лилово-красный цвет.

Основная функциональная единица почечной паренхимы нефрон. В обеих почках человека их около 2 млн., у крысы - 62 000, у собаки - 816 000. Различают два типа нефронов: корковые (85%), мальпигиево тельце которых локализуется в наружной зоне коркового вещества, и юкстамедуллярные (15%), клубочки которых расположены на границе коркового и мозгового вещества почки.

В нефроне млекопитающих можно выделить следующие отделы (рис. 60):

  • почечное (мальпигиево) тельце, состоящее из сосудистого клубочка Шумлянского и окружающей его капсулы Боумена. (Сосудистый клубочек был открыт русским ученым А. В. Шумлянским, а окружающая его капсула впервые описана в 1842 г. Боуменом.);
  • проксимальный сегмент нефрона, состоящий из проксимального извитого и прямого канальцев;
  • тонкий сегмент, содержащий тонкое нисходящее и тонкое восходящее колена петли Генле;
  • дистальный сегмент, состоящий из толстого восходящего колена петли Генле, дистального извитого и связующего канальцев.

    Связующий каналец соединяется с собирательной трубкой. Последние проходят корковое и мозговое вещество почки и, сливаясь вместе, образуют в почечном сосочке протоки, открывающиеся в чашечки.

Капсулы нефронов расположены в корковом слое почки, тогда как канальцы - преимущественно в мозговом. Капсула нефрона напоминает шар, верхняя часть которого вдавлена в нижнюю, так что между его стенками образуется щель - полость капсулы. От нее отходит тоненькая и длинная извитая трубочка - каналец. Стенки канальца, как и каждая из двух стенок капсулы, образованы одним слоем эпителиальных клеток.

Почечная артерия, войдя в почку, делится на большое количество веточек. Тонкий сосуд, называющийся приносящей артерией, заходит во вдавленную часть капсулы, образуя там клубочек капилляров. Капилляры собираются в сосуд, который выходит из капсулы, - выносящую артерию. Последняя подходит к извитому канальцу и снова распадается на капилляры, оплетающие его. Эти капилляры собираются в вены, которые, сливаясь, образуют почечную вену и выносят кровь из почки.

МЕХАНИЗМ ОБРАЗОВАНИЯ МОЧИ

В нефроне происходит три главных процесса:

  • В клубочках - клубочковая фильтрация [показать]

    Начальным этапом образования мочи является фильтрация в почечных клубочках. Клубочковая фильтрация - пассивный процесс. В условиях покоя у взрослого человека около 1/4 части крови, выбрасываемой в аорту левым желудочком сердца, поступает в почечные артерии. Иными словами, через обе почки у взрослого мужчины проходит около 1300 мл крови в минуту, у женщин несколько меньше. Общая фильтрационная поверхность клубочков почек составляет примерно 1,5 м 2 . В клубочках из кровеносных капилляров в просвет капсулы почечного клубочка (боуменова капсула) происходит ультрафильтрация плазмы крови, в результате чего образуется первичная моча, в которой практически нет белка. В норме белки как коллоидные вещества не проходят через стенку капилляров в полость капсул почечного клубочка. При ряде патологических состояний проницаемость мембраны почечного фильтра повышается, что ведет к изменению состава ультрафильтрата. Повышение проницаемости является главной причиной протеинурии, и прежде всего альбуминурии. В норме объемная скорость фильтрации в среднем составляет 125 мл/ мин, что в 100 раз превышает продукцию конечной мочи. Скорость фильтрации обеспечивается фильтрационным давлением, которое можно выразить следующей формулой:

    ФД = КД - (ОД + КапсД),


    где ФД - фильтрационное давление; КД - капиллярное давление; ОД - онкотическое давление; КапсД - внутрикапсулярное давление.

    Следовательно, для обеспечения процесса фильтрации необходимо, чтобы гидростатическое давление крови в капиллярах превышало сумму онкотического и внутрикапсулярного. В норме эта величина составляет около 40 гПа (30 мм рт. ст.). Вещества, усиливающие кровообращение в почках или увеличивающие количество функционирующих клубочков (например, теобромин, теофиллин, плоды можжевельника, листья толокнянки и др.), обладают мочегонными свойствами.

    Капиллярное давление в почках зависит не столько от артериального давления, сколько от соотношения просвета "приносящей" и "выносящей" артериол клубочка. "Выносящая" артериола примерно на 30% меньше по диаметру, чем "приносящая", регуляция их просвета осуществляется прежде всего кининовой системой. Сужение "выносящей" артериолы увеличивает фильтрацию. Напротив, сужение "приносящей" артериолы снижает фильтрацию.

    По величине клубочковой фильтрации судят о фильтрационной способности почек. Если ввести в кровяное русло вещество, которое фильтруется в клубочках, но не реабсорбируется и не секретируется канальцами нефронов, то его клиренс численно равен объемной скорости клубочковой фильтрации. Клиренс (очищение) любого соединения принято выражать количеством миллилитров плазмы, которое в 1 мин полностью освобождается от вещества при протекании ее через почки. Веществами, по которым чаще определяют клубочковую фильтрацию, являются инулин и маннитол. Для определения клиренса (например, инулина) необходимо величину минутного диуреза умножить на Км/Ккр (отношение концентраций данного вещества в моче и плазме крови):


    где С - клиренс; Kм - концентрация данного соединения в моче; Ккр - концентрация в плазме крови; V - количество мочи в 1 мин, мл. В случае с инулином в норме получим величину клубочковой фильтрации, равную 100-125 мл за 1 мин. (Принято считать, что в норме у человека с массой тела 70 кг величина клубочковой фильтрации составляет 125 мл/мин, или 180 л в сутки.)
  • В канальцах
    • реабсорбция [показать]

      Реабсорбция и секреция

      Суточное количество ультрафильтрата в 3 раза превышает общее количество жидкости в организме. Естественно, что большая часть первичной мочи во время движения по почечным канальцам (общая длина почечных канальцев приблизительно 120 км) отдает большую часть своих составных частей, особенно воду, обратно в кровь. Лишь 1 % жидкости, профильтрованной клубочками, превращается в мочу. В канальцах реабсорбируется 99% воды, натрия, хлора, гидрокарбоната, аминокислот, 93% калия, 45% мочевины и т. д. Из первичной мочи в результате реабсорбции образуется вторичная, или окончательная, моча, которая затем поступает в почечные чашечки, лоханку и по мочеточникам попадает в мочевой пузырь.

      Функциональное значение отдельных почечных канальцев в процессе мочеобразования неодинаково. Клетки проксимального сегмента нефрона реабсорбируют попавшие в фильтрат глюкозу, аминокислоты, витамины, электролиты; 6/7 жидкости, составляющей первичную мочу, подвергается реабсорбции также в проксимальных канальцах. Вода первичной мочи подвергается также частичной (парциальной) реабсорбции в дистальных канальцах. В дистальных канальцах происходит и дополнительная реабсорбция натрия. В этих же канальцах могут секретироваться в просвет нефрона ионы калия, аммония, водорода и др.

      В настоящее время в значительной степени изучены молекулярные механизмы реабсорбции и секреции веществ клетками почечных канальцев. Так, установлено, что при реабсорбции натрий пассивно поступает из просвета канальца внутрь клетки, движется по ней к области базальной плазматической мембраны и с помощью "натриевого насоса" поступает во внеклеточную жидкость. До 80% энергии АТФ в клетка канальцев почек расходуется на "натриевый насос". Всасывание воды в проксимальном сегменте происходит пассивно, в результате активного всасывания натрия. Вода в этом случае "следует" за натрием. Кстати, в дистальном сегменте всасывание воды происходит вне всякой зависимости от всасывания ионов Na, процесс этот регулируется антидиуретическим гормоном.

      В отличие от натрия калий может не только реабсорбироваться, но и секретироваться. При секреции калий из межклеточной жидкости поступает через базальную плазматическую мембрану в клетку канальца за счет работы "натрий-калиевого" насоса", а затем выделяется в просвет нефрона через апикальную клеточную "мембрану пассивно. Секреция, как и реабсорбция, является активным процессом, связанным с функцией клеток канальцев. Интимные механизмы секреции те же, что и реабсорбции, но только процессы протекают в обратном направлении - от крови к канальцу (рис. 132).

      Вещества, которые не только фильтруются через клубочки, но и реабсорбируются или секретируются в канальцах, дают клиренс, который показывает целостную работу почек (смешанный клиренс), а не отдельные их функции. При этом в зависимости от того, комбинируется ли фильтрация с реабсорбцией или секрецией, выделяют два вида смешанного клиренса: фильтрационно-реабсорбционный клиренс и фильтрационно-секреционный клиренс. Величина смешанного фильтрационно-реабсорбционного клиренса меньше величины клубочкового клиренса, так как часть вещества реабсорбируется из первичной мочи в канальцах. Значение этого показателя тем меньше, чем больше реабсорбция в канальцах. Так, для глюкозы он в норме равен 0. Максимальное всасывание глюкозы в канальцах составляет 350 мг/мин. Принято максимальную способность канальцев к обратному всасыванию обозначать Тм (транспорт максимум). Иногда встречаются больные с заболеванием почек, которые, несмотря на высокое содержание глюкозы в плазме крови, не выделяют сахар с мочой, так как фильтруемое количество глюкозы ниже значения Тм. Наоборот, при врожденном заболевании почечная глюкозурия может быть основана на снижении значения Тм.

      Для мочевины величина смешанного фильтрационно - реабсорбционного клиренса составляет 70. Это значит, что из каждых 125 мл ультрафильтрата или плазмы крови за минуту от мочевины полностью освобождается 70 мл. Иными словами, определенное количество мочевины, а именно то, которое содержится в 55 мл ультрафильтрату или плазмы, всасывается обратно.

      Величина смешанного фильтрационно-секреционного клиренса может быть больше клубочкового клиренса, так как к первичной моче прибавляется дополнительное количество вещества, которое секретируется в канальцах. Этот клиренс тем больше, чем сильнее секреция канальцев. Клиренс некоторых веществ, секретируемых канальцами (например, диодраст, парааминогиппуровя кислота), настолько высок, что практически приближается к величине почечного кровотока (к количеству крови, которое за одну минуту проходит через почки). Таким образом, по клиренсу этих веществ можно определить величину кровотока.

      Реабсорбция и секреция различных веществ регулируются ЦНС и гормональными факторами. Например, при сильных болевых раздражениях или отрицательных эмоциях может возникнуть анурия (прекращение процесса мочеобразования). Всасывание воды возрастает под влиянием антидиуретического гормона вазопрессина. Альдостерон увеличивает реабсорбцию натрия в канальцах, а вместе с ним и воды. Всасывание кальция и фосфата изменяется под влиянием паратиреоидного гормона. Паратгормон стимулирует секрецию фосфата, а витамин D задерживает ее.

      Регуляцию реабсорбции натрия и воды в почке можно представить в виде схемы (рис. 133). При недостаточном поступлении крови к почечным клубочкам, что сопровождается небольшим растяжением стенок артериол (снижение давления), происходит возбуждение заложенных в стенках артериол клеток юкстагломерулярного аппарата (ЮГА). Они начинают усиленно секретировать протеолитический фермент рении, катализирующий начальный этап образования ангиотензина. Субстратом ферментативного действия ренина является ангиотензиноген. Это - гликопротеид, относящийся к α 2 -глобулинам и содержащийся в плазме крови и лимфе.

      Ренин разрывает в молекуле ангиотензиногена пептидную связь, образованную двумя остатками лейцина, в результате чего освобождается декапептид - ангиотензин I, биологическая активность которого незначительная в среде, близкой к нейтральной.

      До последнего времени было принято считать, что под влиянием специальной пептидазы, обнаруженной в плазме крови и тканях и получившей название ангиотензин I-превращающего фермента, из ангиотензина I образуется октапептид ангиотензин II. Главным местом этого превращения являются легкие.

      В 1963 г. В. Н. Орехович и сотр. выделили из почек крупного рогатого скота протеолитический фермент, отличающийся по специфичности действия от всех известных к тому времени тканевых протеаз. Этот фермент отщепляет дипептиды от карбоксильного конца различных пептидов. Исключение составляют пептидные связи, образованные при участии иминогруппы пролина. Фермент был назван карбоксикатепсином. Оптимум его действия находится в среде, близкой к нейтральной. Он активируется ионами хлора и относится к металлоферментам. В. Н. Орехович выдвинул предположение, что именно карбоксикатепсин является тем ферментом, который превращает ангиотензин I (Асп-Apг-Вал-Тир-Вал-Гис-Про-Фен-Гис-Лей) в ангиотензин II, отщепляя от ангиотензина I дипептид гис-лей, и что не существует специфического ангиотензин I-превращающего фермента, о котором сообщалось впервые в 1956 г. Скегсом и др.

      Учитывая довольно широкую специфичность действия карбоксикатепсина, В. Н. Орехович и сотр. предположили также возможность участия этого фермента в инактивации антагониста ангиотензина - брадикинина.

      В 1969-1970 гг. вышло несколько работ, подтверждающих данные положения. Одновременно было доказано, что превращение ангиотензина I в ангиотензин II происходит не только в тканях легких, но и в почках (сейчас уже известно, что карбоксикатепсин имеется практически во всех тканях).

      В отличие от своего предшественника (ангиотензина I) ангиотензин II обладает очень высокой биологической активностью. В частности, ангиотензин II способен стимулировать секрецию надпочечниками альдостерона, который увеличивает реабсорбцию натрия в канальцах, а вместе с ним и воды. Объем циркулирующей крови возрастает, давление в артериоле повышается и восстанавливается равновесие системы.

      При снижении кровенаполнения предсердий и, возможно, каротидных сосудов реагируют волюморецепторы (объемные рецепторы), их импульс передается на гипоталамус, где образуется антидиуретический гормон (АДГ). По портальной системе гипофиза этот гормон попадает в заднюю долю гипофиза, концентрируется там и выделяется в кровь. Основной точкой приложения действия АДГ является, по-видимому, стенка дистальных канальцев нефрона, где он повышает уровень активности гиалуронидазы. Последняя, деполимеризуя гиалуроновую кислоту, повышает проницаемость стенок канальцев. Вода пассивно диффундирует через мембраны клетки вследствие осмотического градиента между гиперосмотической межклеточной жидкостью организма и гипоосмотической мочой, т. е. АДГ регулирует реабсорбцию свободной воды. Сопоставляя физиологические эффекты альдостерона и АДГ, можно видеть, что АДГ понижает осмотическое давление в тканях организма, а альдостерон повышает его.

    • секреция

Почки имеют также важное значение как инкреторный (внутрисекреторный) орган. Как уже отмечалось, в клетках юкстагломерулярного аппарата, расположенного в области сосудистого полюса клубочка, образуется ренин. Известно, что ренин, кроме почечного кровообращения, через ангиотензин влияет на кровяное давление во всем организме. Ряд исследователей считают, что повышенное образование ренина является одной из главных причин развития гипертонической болезни.

В почках также вырабатывается эритропоэтин, который стимулирует костномозговое кроветворение (эритропоэз). Эритропоэтин - вещество белковой природы. Его биосинтез почками активно идет при различных стрессовых состояниях - гипоксии, кровопотере, шоке и т. д. В последние годы установлено, что в почках присходит также синтез простагландинов, которые способны менять чувствительность почечной клетки к действию некоторых гормонов.

РОЛЬ ПОЧЕК В ПОДДЕРЖАНИИ КИСЛОТНО-ОСНОВНОГО СОСТОЯНИЯ

Почки обладают значительным влиянием на кислотно-основное состояние, но оно сказывается по истечении намного большего времени, чем влияние буферных систем крови и деятельности легких. Буферные системы крови срабатывают в течение 30 с. Примерно 1-3 мин требуется легким для того, чтобы сгладить наметившийся сдвиг концентрации водородных ионов в крови, около 10-20 ч необходимо почкам для восстановления нарушенного кислотно-основного состояния или наметившегося отклонения от равновесия. Основным механизмом поддержания концентрации водородных ионов в организме, реализуемым в клетках почечных канальцев, являются процессы реабсорбции натрия и секреции ионов водорода (см. схему).

Этот механизм осуществляется с помощью нескольких химических процессов. Первый из них - реабсорбция натрия при превращении двуосновных фосфатов в одноосновные. Почечный фильтрат, формирующийся в клубочках, содержит достаточное количество солей, в том числе и фосфатов. Однако концентрация двуосновных фосфатов постепенно убывает по мере продвижения первичной мочи по почечным канальцам. Так, в крови отношение одноосновного фосфата к двуосновному составляет 1:4, в клубочковом фильтрате 9:1; в моче, которая проходит через дистальный сегмент нефрона, соотношение это уже 50:1. Это объясняется избирательным всасыванием канальцевыми клетками ионов натрия. Взамен из канальцевых клеток в просвет почечного канальца выделяются ионы водорода. Таким образом, двуосновной фосфат (Na 2 HPO 4) превращается в форму одноосновного (NaH 2 PO 4) и в таком виде фосфаты выделяются с мочой. В клетках канальцев из угольной кислоты образуется бикарбонат, увеличивая тем самым щелочной резерв крови.

Второй химический процесс, который обеспечивает задержку натрия в организме и выведение излишка водородных ионов,- это превращение в просвете канальцев бикарбонатов в угольную кислоту. В клетках канальцев при реакции воды с углекислым газом под влиянием карбоангидразы образуется угольная кислота. Водородные ионы угольной кислоты выделяются в просвет канальца и соединяются там с анионами бикарбоната, эквивалентный этим анионам натрий поступает в клетки почечных канальцев. Образовавшаяся в просвете канальца Н 2 СO 3 легко распадается на СО 2 и Н 2 О и в таком виде покидает организм.

Третьим процессом, который также способствует сбережению натрия в организме, является образование в почках аммиака и использование его вместо других катионов для нейтрализации и выведения кислых эквивалентов с мочой. Основным источником при этом служат процессы дезаминирования глутамина, а также окислительного дезаминирования аминокислот, главным образом глутаминовой кислоты.

Распад глутамина происходит при участии фермента глутаминазы, причем образуются глутаминовая кислота и свободный аммиак:

Глутаминаза найдена в различных органах и тканях человека, однако наибольшая ее активность отмечается в ткани почек.

В общем итоге соотношение между концентрацией водородных ионов в моче и крови может составить 800:1, настолько велика способность почек выводить из организма ионы водорода. Процесс усиливается в тех случаях, когда возникает тенденция к накоплению ионов водорода в организме.

НЕКОТОРЫЕ ОСОБЕННОСТИ ОБМЕНА ВЕЩЕСТВ
ПОЧЕЧНОЙ ТКАНИ В НОРМЕ И ПАТОЛОГИИ

Сложные физиологические процессы в почечной ткани протекают с постоянным потреблением большого количества энергии получаемой в ходе метаболических реакций. Не менее 8-10% всего поглощаемого человеком в покое кислорода используется на окислительные процессы, происходящие в почках. Потребление энергии на единицу массы в почках больше, чем в любом другом органе.

В корковом слое почки ярко выражен аэробный тип обмена веществ. В мозговом слое преобладают анаэробные процессы. Почка относится к органам, наиболее богатым ферментами. Большинство из этих ферментов встречается и в других органах. Так, например, лактатдегидрогеназа, аспартатаминотрансфераза, аланинаминотрансфераза, глутаматдегидрогеназа широко представлены как в почках, так и в других тканях. Вместе с тем имеются ферменты, которые в значительной степени специфичны для почечной ткани. К таким ферментам прежде всего относится глицин-амидинотрансфераза (трансамидиназа). Данный фермент содержится в тканях почек и поджелудочной железы и практически отсутствует в других тканях. Глицин-амидинотрансфераза осуществляет перенос амидиновой группы с L-аргинина на глицин с образованием L-орнитина и гликоциаминa (Глицин-амидинотрансфераза осуществляет также реакцию переноса амидиновой группы с L-канавалина на L-орнитин. ).

L-аргинин + глицин -> L-орнитин + гликоциамин

Эта реакция является начальным этапом синтеза креатина. Глицин-амидинотрансфераза была открыта еще в 1941 г. Однако лишь в 1965 г. Харкер и соавт., а затем С. Р. Мардашев и А. А. Карелин (1967) впервые отметили диагностическую ценность определения фермента в сыворотке крови при заболевании почек. Появление данного фермента в крови может быть связано либо с поражением почек, либо с начинающимся или развившимся некрозом поджелудочной железы.

В табл. 52 приведены результаты определения активности глицин-амидинотрансферазы в сыворотке крови при заболеваниях почек. При различных типах и фазах заболеваний почек наибольшая активность глицин-амидинотрансферазы в сыворотке крови наблюдается при хроническом пиелонефрите в фазе нарушения азотовыделительной функции почек, а далее в убывающем порядке следует хронический нефрит с гипертензионным и отечно-гипертензионным синдромами и умеренным нарушением азотовыделительной способности, хронический нефрит с изолированным мочевым синдромом без нарушения азотовыделительной функции, остаточные явления острого диффузного гломерулонефрита.

Таблица 52. Активность глицин-амидинотрансферазы в сыворотке крови при заболеваниях почек (Алексеев Г. И. и др., 1973)
Название болезни Активность фермента (в условных единицах)
средние данные пределы колебаний
Остаточные явления острого нефрита 1,13 0-3,03
Хронический нефрит с изолированным мочевым синдромом без нарушения азотовыделительной функции 2,55 0-6,8
Хронический нефрит с гипертензионным и отечно-гипертензионным синдромами и умеренным нарушением азотовыделительной функции 4,44 1,55-8,63
Терминальная фаза хронического нефрита 3,1 2,0-4,5
Хронический пиелонефрит без нарушения азотовыделительной функции 2,8 0-0,7
Хронический пиелонефрит с нарушением азотовыделительной функции 8,04 6,65-9,54
Нефротический синдром, обусловленный амилоидозом почек и тромбозом почечных вен 0 0

Ткань почек относится к типу тканей с высокой активностью изоферментов ЛДГ 1 и ЛДГ 2 . Однако при изучении тканевых гомогенатов различных слоев почек обнаруживается четкая дифференциация спектров лактатдегидрогеназы. В корковом слое преобладает активность ЛДГ 1 и ЛДГ 2 , а в мозговом - ЛДГ 5 и ЛДГ 4 . При острой почечной недостаточности в сыворотке крови повышается активность анодных изоферментов ЛДГ, т. е. изоферментов с высокой электрофоретической подвижностью (ЛДГ 1 и ЛДГ 2).

Определенный интерес представляет также исследование изоферментов аланинаминополипептидазы (ААП). Известно, что существует пять изоферментов ААП. В отличие от изоферментов ЛДГ изоферменты ААП определяются в различных органах не в виде полного спектра (пять изоферментов), а чаще как один изофермент. Так, изофермент ААП 1 представлен главным образом в ткани печени, ААП 2 - в поджелудочной железе, ААП 3 - в почках, ААП 4 и ААП 5 - в различных отделах стенки кишок. При повреждении ткани почек изофермент ААП 3 обнаруживается в крови и моче, что является специфическим признаком поражения почечной ткани.

Не менее важно в диагностике заболеваний почек исследование активности ферментов мочи, так как при острых воспалительных процессах почек прежде всего развивается повышенная проницаемость клубочковых мембран, что обусловливает выделение белка, в том числе ферментов, с мочой. В целом же сдвиги в обмене веществ почечной ткани могут быть вызваны блокадой клубочкового кровотока, нарушением фильтрации и реабсорбции, блокадой оттока мочи, поражением юкстагломерулярного аппарата, нарушением секреции и т. д.

ОБЩИЕ СВОЙСТВА И СОСТАВНЫЕ ЧАСТИ МОЧИ

Общие свойства мочи

Количество выделяемой за сутки мочи (диурез) в норме у взрослых людей колеблется от 1003 до 2000 мл, составляя в среднем 50-80% от объема принятой жидкости. Суточное количество мочи ниже 500 мл и выше 2000 мл у взрослого считается патологическим. Повышение объема мочи (полиурия) наблюдается при приеме большого количества жидкости, при употреблении пищевых веществ, повышающих диурез (арбуз, тыква и др.). При патологии полиурия (более 2000 мл в сутки) отмечается при заболеваниях почек (хронические нефриты и пиелонефриты), при сахарном диабете и других патологических состояниях. Много мочи выделяется при так называемом несахарном диабете (diabetes insipidus) - за сутки 15 л и более.

Понижение суточного количества мочи (олигурия) наблюдается при недостаточном приеме жидкостей, лихорадочных состояниях (при этом значительное количество воды удаляется из организма через кожу), при рвоте, поносе, токсикозах, остром нефрите и т. д. В случае тяжелых поражений почечной паренхимы (при острых диффузных нефритах), мочекаменной болезни (закупорка мочеточников), отравлениях свинцом, ртутью, мышьяком, при сильных нервных потрясениях возможно почти полное прекращение выделения мочи (анурия). Длительная анурия ведет к уремии.

В норме днем выделяется больше мочи, чем ночью. Соотношение между дневным и ночным выделением мочи составляет от 4:1 до 3:1. При некоторых патологических состояниях (начальные формы сердечной декомпенсации, цистопиелиты и т. д.) моча в большем количестве выделяется ночью, чем днем. Это состояние носит название никтурия.

Цвет мочи в норме колеблется от соломенно-желтого до насыщенно желтого. Окраска мочи зависит от содержания в ней пигментов: урохрома, уробилина, уроэритрина, урозеина и др.

Моча насыщенно желтого цвета обычно концентрированная, имеет высокую плотность и выделяется в относительно небольшом количестве. Бледная (соломенного цвета) моча чаще имеет низкую относительную плотность и выделяется в большом количестве.

При патологии цвет мочи может быть красным, зеленым, коричневым и т. д., что обусловливается наличием в моче не встречающихся в норме красящих веществ. Например, красный или розово-красный цвет мочи наблюдается при гематурии и гемоглобинурии, а также после приема антипирина, амидопирина, сантонина и других лекарственных веществ. Коричневый или красно-бурый цвет встречается при высокой концентраций уробилина и билирубина в моче.

В мочу здорового человека в очень незначительных количествах попадает стеркобилиноген, всасывающийся по системе геморроидальных вен. На свету и на воздухе бесцветный стеркобилиноген окисляется в окрашенный пигмент (стеркобилин). Часто в клинике стеркобилин мочи неверно называют уробилином. При заболеваниях печени, когда она теряет способность разрушать всосавшийся из тонкой кишки мезобилиноген (уробилиноген) до ди- и трипирролов, в моче в большом количестве появляется уробилиноген (на свету и на воздухе превращается в уробилин). В таких случаях моча приобретает темный цвет.

Зеленый или синий цвет мочи отмечается при введении в организм метиленового синего, а также при усилении процессов гниения белков в кишечнике. В последнем случае в моче появляется увеличенное количество индоксилсерных кислот, которые могут разлагаться с образованием индиго.

Нормальная моча прозрачна. Мутность мочи может быть вызвана солями, клеточными элементами, бактериями, слизью, жиром (липурия). Причину помутнения мочи можно определить либо под микроскопом (исследование осадка мочи), либо путем химического анализа.

Относительная плотность мочи у взрослого человека в течение суток колеблется в довольно широких пределах (от 1,002 до 1,035), что связано с периодическим приемом пищи, воды и потерей жидкости организмом (потоотделение и др.). Чаще она равна 1,012-1,020. Плотность мочи дает определенное представление о количестве растворенных в ней веществ. В сутки с мочой выделяется от 50 до 75 г плотных веществ. Приближенный расчет содержания плотного остатка в моче (в граммах на 1 л) можно произвести, умножив две последние цифры относительной плотности на коэффициент 2,6.

Лишь при тяжелой недостаточности почек последние все время выделяют мочу с одинаковой относительной плотностью, равной плотности первичной мочи, или ультрафильтрата (~ 1,010). Это состояние носит название изостенурии.

Постоянно низкое значение плотности мочи указывает на нарушение концентрационной функции почек, имеющей большое значение для поддержания постоянства осмотического давления (изоосмии) крови. Это отмечается при хроническом нефрите, первично или вторично сморщенной почке. При несахарном диабете также выделяется моча с низкой плотностью (1,001 -1,004), что связано с нарушением обратной реабсорбции воды в канальцах.

При олигурии (понижение суточного количества мочи), например, при остром нефрите, моча имеет высокую плотность. Высокая плотность характерна для сахарного диабета при полиурии, в этом случае она обусловлена содержанием в моче большого количества сахарa.

Реакция мочи в норме при смешанной пище кислая или слабокислая (pH 5,3-6,5). Обычно за сутки с мочой выводится от 40 до 75 мэкв кислот. На величину pH мочи влияет характер пищи. При употреблении преимущественно мясной пищи моча имеет более кислую реакцию, при овощной диете реакция мочи щелочная.

Кислая реакция мочи у человека зависит от присутствия в ней главным образом однозамещенных фосфатов (например, КН 2 РO 4 или NaH 2 PO 4). В щелочной моче преобладают двузамещенные фосфаты или бикарбонаты калия либо натрия.

Резко кислая реакция мочи наблюдается при лихорадочных состояниях, сахарном диабете (особенно при наличии ацетоновых тел в моче), при голодании и т. д. Щелочная реакция мочи отмечается при циститах и пиелитах (микроорганизмы способны разлагать мочевину с образованием аммиака уже в полости мочевого пузыря), после сильной рвоты, при приеме некоторых медикаментов (например, бикарбоната натрия), употреблении щелочных минеральных вод и т. д.

Химический состав мочи

Плотные вещества мочи (около 60 г в суточном количестве) представлены как органическими, так и неорганическими веществами. В табл. 53 приведены средние данные, характеризующие содержание ряда органических и неорганических веществ в суточном количестве мочи человека при смешанном питании.

Всего в моче в настоящее время обнаружено свыше 150 химических ингредиентов. Далее представлены данные лишь о наиболее важных компонентах мочи человека в норме и при некоторых патологических состояниях.

Таблица 53. Важнейшие компоненты мочи взрослого человека
Компонент Содержание (в расчете на суточное количество мочи) М/П
граммы ммоль
Na + 2-4 100-200 0,8-1,5
К + 1,5-2,0 50-70 10-15
Mg 2+ 0,1-0,2 4-8
Са 2+ 0,1-0,3 1,2-3,7
NH 4 + , г азота 0,4-1,0 30-75
Мочевая кислота, г азота 0,08-0,2 20
Гиппуровая кислота, г азота 0,4-0,08
Cl - 100-250 0,8-2
НСО 3 - 0-50 0-2
Н 2 РO 4 и НРО 4 2- , г фосфора 0,8-1,2 50-75 25
SO 4 2- , г серы 0,6-1,8 20-60 50
Мочевина, г азота 6-18 35
Креатинин, г азота 0,3-0,8 70
Пептиды, г азота 0,3-0,7
Аминокислоты, г азота 0,008-0,15
Индикан 0,01
M/П - отношение концентрации в моче (М) к содержанию в плазме крови (П)

Органические вещества мочи

  • Мочевина [показать]

    Мочевина составляет большую часть органических веществ, входящих в состав мочи. В среднем за сутки с мочой взрослого человека выводится около 30 г мочевины (от 12 до 36 г). Общее количество азота, выделяемое с мочой за сутки, колеблется от 10 до 18 г, из них при смешанной пище на долю азота мочевины приходится 80-90%. Количество мочевины в моче обычно повышается при употреблении пищи, богатой белками, при всех заболеваниях, сопровождающихся усиленным распадом белков тканей (лихорадочные состояния, опухоли, гипертиреоз, диабет и т. д.), а также при приеме некоторых лекарственных веществ (например, ряда гормонов). Содержание выделяемой с мочой мочевины уменьшается при тяжелых поражениях печени (печень является основным местом синтеза мочевины в организме), заболеваниях почек (особенно когда нарушается фильтрационная способность почек), а также при применении инсулина и др.

  • Креатинин [показать]

    Креатинин также является конечным продуктом азотистого обмена. Он образуется в мышечной ткани из фосфокреатина. Суточное выделение креатинина для каждого человека - величина довольно постоянная и отражает в основном его мышечную массу. У мужчин на каждый 1 кг массы тела за сутки выделяется с мочой от 18 до 32 мг креатинина, а у женщин - от 10 до 25 мг. Эти цифры мало зависят от величины белкового пайка. В связи с этим определение суточной экскреции креатинина с мочой во многих случаях может быть использовано для контроля полноты сбора суточной мочи.

  • Креатин [показать]

    Креатин в норме в моче взрослых людей практически отсутствует. Он появляется в ней либо при употреблении значительных количеств креатина с пищей, либо при патологических состояниях. Как только уровень креатина в сыворотке крови становится 0,12 ммоль/л, креатин появляется в моче.

    В первые годы жизни ребенка возможна "физиологическая креатинурия". По-видимому, появление креатина в моче у детей в раннем возрасте связано с усиленным синтезом креатина, опережающим развитие мускулатуры. Некоторые исследователи к физиологическим явлениям относят и креатинурию стариков, которая возникает как следствие атрофии мышц и неполного использования образующегося в печени креатина.

    Наибольшее содержание креатина в моче наблюдается при патологических состояниях мышечной системы и прежде всего при миопатии, или прогрессирующей мышечной дистрофии.

    Известно также, что креатинурию можно наблюдать при поражениях печени, сахарном диабете, эндокринных расстройствах (гипертиреоз, аддисонова болезнь, акромегалия и др.), инфекционных заболеваниях.

  • Аминокислоты [показать]

    Аминокислоты в суточном количестве мочи составляют около 1,1 г. Соотношение между содержанием отдельных аминокислот в крови и моче неодинаково. Концентрация той или иной аминокислоты, выделяемой с мочой, зависит от ее содержания в плазме крови и от степени ее реабсорбции в канальцах, т. е. от ее клиренса. В моче выше всего концентрация глицина и гистидина, затем глутамина, аланина, серина.

    Гипераминоацидурия встречается при заболеваниях паренхимы печени. Это объясняется нарушением в печени процессов дезаминирования и переаминирования. Наблюдается гипераминоацидурия также при тяжелых инфекционных заболеваниях, злокачественных новообразованиях, обширных травмах, миопатии, коматозных состояниях, гипертиреозе, при лечении кортизоном и АКТГ и других состояниях.

    Известны также нарушения обмена отдельных аминокислот. Многие из этих заболеваний носят врожденный, или наследственный, характер. Примером может служить фенилкетонурия. Причина заболевания - наследственно обусловленный недостаток фенилаланингидроксилазы в печени, вследствие чего метаболическое превращение аминокислоты фенилаланин в тирозин блокировано. Результатом блокады являются накопление в организме фенилаланина и его кетопроизводных и их появление в большом количестве в мече. Обнаружить фенилкетонурию очень легко с помощью FeCl 3: спустя 2-3 мин после добавления в свежую мочу нескольких капель раствора FeCl 3 появляется оливково-зеленая окраска.

    Другим примером может служить алкаптонурия (синоним: гомогентизийурия). При алькаптонурии в моче резко увеличивается концентрация гомогентизиновой кислоты - одного из метаболитов обмена тирозина. В результате моча, оставленная на воздухе, резко темнеет. Сущность блокады метаболизма при алкаптонурии состоит в недостатке оксидазы гомогентизиновой кислоты. Для качественного и количественного определений гомогентизиновой кислоты в моче применяют тест восстановления серебра на фотографических пластинках.

    Известны также врожденные заболевания, как гиперпролинемия (возникает в результате недостатка фермента пролиноксидазы и как следствие - пролинурия); гипервалинемия (врожденное нарушение обмена валина, что сопровождается резким повышением концентрации валина в моче); цитруллинемия (врожденное нарушение цикла образования мочевины, обусловленное недостатком фермента аргининсукцинат-синтетазы, с мочой выделяется увеличенное количество цитруллина) и др.

  • Мочевая кислота [показать]

    Мочевая кислота является конечным продуктом обмена пуриновых оснований. За сутки с мочой выделяется около 0,7 г мочевой кислоты. Обильное потребление пищи содержащей нуклеопротеиды, вызывает в течение некоторого времени увеличенное выделение с мочой мочевой кислоты экзогенного происхождения. И, наоборот, при питании, бедном пуринами, выделение мочевой кислоты снижается до 0,3 г в сутки.

    Повышенное выделение мочевой кислоты наблюдается при лейкемии, полицитемии, гепатитах и подагре. Содержание мочевой кислоты в моче повышается также при приеме ацетилсалициловой кислоты и ряда стероидных гормонов.

    Наряду с мочевой кислотой в моче всегда содержится небольшое количество пуринов как эндо-, так и экзогенного происхождения.

  • Гиппуровая кислота [показать]

    Гиппуровая кислота в небольшом количестве всегда определяется в моче человека (около 0,7 г в суточном объеме). Она представляет собой соединение глицина и бензойной кислоты. Повышенное выделение гиппуровой кислоты отмечается при употреблении преимущественно растительной пищи, богатой ароматическими соединениями. Из последних образуется бензойная кислота.

    В 1940 г. Квик ввел в клиническую практику гиппуровую пробу (проба Квика). При нормальных условиях клетки печени обезвреживают введенную бензойную кислоту (больной принимает после легкого завтрака 3-4 г бензоата натрия), соединяя ее с глицином. Образовавшаяся гиппуровая кислота выводится с мочой. В норме при проведении пробы Квика с мочой выводится 65-85% принятого бензоата натрия. При поражении печени образование гиппуровой кислоты нарушается, поэтому количество последней в моче резко падает.

  • Безазотистые органические компоненты мочи [показать]

    Безазотистые органические компоненты мочи - это щавелевая, молочная и лимонная кислоты, а также масляная, валериановая, янтарная, β-гидроксимасляная, ацетоуксусная и другие кислоты. Общее содержание органических кислот в суточном количестве мочи обычно не превышает 1 г.

    В норме содержание каждой из этих кислот в суточном объеме мочи исчисляется миллиграммами, поэтому количественно определять их очень сложно. Однако выведение многих из них при тех или иных состояниях увеличивается и тогда их проще обнаружить в моче. Например, при усиленной мышечной работе повышается уровень молочной кислоты, количество цитрата и сукцината увеличивается при алкалозе.

    Неорганические (минеральные) компоненты мочи

    Из минеральных веществ в моче практически содержатся все элементы, которые входят в состав крови и других тканей организма. Из 50-65 г сухого остатка, образующегося при выпаривании суточного количества мочи, на долю неорганических компонентов приходится 15-25 г.

    • Натрий и хлор [показать]

      В норме около 90% принятых с пишей хлоридов выделяется с мочой (8-15 г NaCI в сутки). Отмечено, что при ряде патологических состояний (хронический нефрит, диарея, острый суставной ревматизм и др.) выведение хлоридов с мочой может быть снижено. Максимальная концентрация Na + и С1 - (в моче ~ по 340 ммоль/л) может наблюдаться после введения в организм больших количеств гипертонического раствора.

    • Калий, кальций и магний [показать]

      Многие исследователи считают, что практически все количество калия, которое имеется в клубочковом фильтрате, обратно всасывается из первичной мочи в проксимальном сегменте нефрона. В дистальном сегменте происходит секреция ионов калия, которая в основном связана с обменом между ионами калия и водорода. Следовательно, обеднение организма калием сопровождается выделением кислой мочи.

      Ионы кальция и магния выводятся через почки в небольшом количестве (см. табл. 53). Принято считать, что с мочой выделяется лишь около 30% всего количества Са 2+ и Mg 2+ ; подлежащего удалению из организма. Основная масса щелочноземельных металлов выводится с калом.

    • Бикарбонаты, фосфаты и сульфаты [показать]

      Количество бикарбонатов в моче в значительной мере коррелирует с величиной pH мочи. При pH 5,6 с мочой выделяется 0,5 ммоль/л, при pH 6,6-6 ммоль/л, при pH 7,8-9,3 ммоль/л бикарбонатов. Уровень бикарбонатов повышается при алкалозе и понижается при ацидозе. Обычно с мочой выводится менее 50% всего количества выделяемых организмом фосфатов. При ацидозе выведение фосфатов с мочой возрастает. Повышается содержание фосфатов в моче при гиперфункции околощитовидных желез. Введение в организм витамина D снижает выделение фосфатов с мочой.

    • Серосодержащие аминокислоты [показать]
    • Аммиак [показать]

      Как уже отмечалось, существует специальный механизм образования аммиака из глутамина при участии фермента глутаминазы, которая в большом количестве содержится в почках. Аммиак выводится с мочой в виде аммонийных солей. Содержание их в моче человека в определенной степени отражает кислотно-основное состояние. При ацидозе их количество в моче увеличивается, а при алкалозе снижается. Количество аммонийных солей в моче может быть также снижено при нарушении в почках процессов образования аммиака из глутамина.

    Патологические компоненты мочи

    Широко используемое понятие "патологические компоненты мочи" в известной мере условно, так как большинство соединений, рассматриваемых как патологические компоненты мочи, хотя и в небольшом количестве, но всегда присутствуют в нормальной моче. Иными словами, речь идет о веществах, которые в нормальной моче не встречаются в аналитически определяемых количествах. Это прежде всего белки, сахар, ацетоновые (кетоновые) тела, желчные и кровяные пигменты.

    • Белок [показать]

      В нормальной моче человека содержится минимальное количество белка, присутствие которого не может быть доказано обыкновенными качественными пробами на белок. При ряде заболеваний, особенно при болезнях почек, содержание белка в моче может резко возрасти (протеинурия). Источником белка мочи являются белки сыворотки крови, а также в какой-то степени белки почечной ткани.

      Протеинурии делятся на две большие группы: почечные протеинурии и внепочечные. При почечных протеинуриях белки (в основном белки плазмы крови) попадают в мочу вследствие органического повреждения нефрона, увеличения размеров пор почечного фильтра, а также вследствие замедления тока крови в клубочках. Внепочечные протеинурии связаны с поражением мочевых путей или предстательной железы.

      Часто употребляемое в клинике название "альбуминурия" (при обнаружении в моче белка) неправильное, ибо с мочой выделяются не только альбумины, но и глобулины. Например, при нефрозах общее содержание белка в моче может достигать 26 г/л, при этом концентрация альбуминов 12 г/л, а глобулинов - 14 г/л.

    • Ферменты [показать]

      В моче человека можно обнаружить активность ряда ферментов: липазы, рибонуклеазы, лактатдегидрогеназы, аминотрансфераз, урокиназы, фосфатаз, α-амилазы, лейцин-аминопептидазы и др. Основные трудности при исследовании активности ферментов мочи, за исключением α-амилазы и некоторых других, могут быть сведены к двум моментам: необходимость сгущения (концентрирования) мочи и предотвращение ингибирования ферментов в процессе этого сгущения.

    • Кровь [показать]

      Кровь в моче может быть обнаружена либо в форме красных кровяных клеток (гематурия), либо в виде растворенного кровяного пигмента (гемоглобинурия). Гематурии бывают почечные и внепочечные. Почечная гематурия - основной симптом острого нефрита. Внепочечная гематурия наблюдается при воспалительных процессах или травмах мочевых путей. Гемоглобинурии обычно связаны с гемолизом и гемоглобинемией. Принято считать, что гемоглобин появляется в моче после того, как содержание его в плазме превысит 1 г на 1 л. Гематурию диагностируют, как правило, с помощью цитологического наследования (исследования осадка мочи под микроскопом), а гемоглобинурию - химическим путем.

    • Сахар [показать]

      Нормальная моча человека содержит минимальные количества глюкозы, которые не обнаруживаются обычными качественными пробами на сахар. Однако при патологических состояниях содержание глюкозы в моче увеличивается (глюкозурия). Например, при сахарном диабете количество глюкозы, выделяемое с мочой, может достигать нескольких десятков граммов в сутки).

      Иногда в моче обнаруживаются и другие углеводы, в частности фруктоза, галактоза, пентозы. Фруктозурия наблюдается при врожденной недостаточности ферментов, превращающих фруктозу в глюкозу. Встречаются - также и врожденная пентозурия, и врожденная галактозурия.

      В настоящее время отечественной промышленностью выпускаются наборы для экспресс-анализа сахара в моче. Это тест с сухими реактивами в форме таблеток, основанный на принципе пробы Фелинга, а также индикаторные полоски бумаги, пропитанные реактивами, необходимыми для глюкозо-оксидазной пробы ("Глюкотест").

    • Кетоновые (ацетоновые) тела [показать]

      В нормальной моче эти соединения встречаются лишь в самых ничтожных количествах (не больше 0,01 г в сутки). Они не обнаруживаются обычными качественными пробами (нитропруссидные пробы Легаля, Ланге и др.). При выделении больших количеств кетоновых тел качественные пробы становятся положительными - это явление патологическое и называется кетонурией. Например, при сахарном диабете ежедневно может выделяться до 150 г кетоновых тел.

      С мочой никогда не выделяется ацетон без ацетоуксусной кислоты и наоборот. Обычные нитропруссидные пробы устанавливают не только присутствие ацетона, но также и ацетоуксусной кислоты, к которой они даже более чувствительны, чем к ацетону; β-гидроксимасляная кислота появляется в моче лишь при сильном увеличении количества кетоновых тел (сахарный диабет и др.).

      Наряду с сахарным диабетом кетоновые тела выделяются с мочой при голодании, исключении углеводов из пищи. Кетонурия наблюдается при заболеваниях, связанных с усиленным расходом углеводов, например при тиреотоксикозе, а также при субарахноидальных кровоизлияниях, черепно-мозговых травмах. В раннем детском возрасте продолжительные заболевания желудочно-кишечного тракта (дизентерия, токсикозы) могут вызвать кетонемию и кетонурию в результате голода и истощения. Кетонурия нередко наблюдается при инфекционных заболеваниях: скарлатине, гриппе, туберкулезе, менингите. При этих заболеваниях кетонурия не имеет диагностического значения и является вторичным явлением.

    • Билирубин [показать]

      В норме моча содержит минимальные количества билирубина, которые не могут быть обнаружены обычными качественными пробами. Увеличенное выделение билирубина, при котором обычные качественные пробы на билирубин в моче становятся положительными, называется билирубинурией. Она встречается при закупорке желчного протока и заболевании паренхимы печени.

      Выделение билирубина в мочу особенно сильно выражено при обтурационных желтухах. При застое желчи переполненные желчью канальцы травмируются и пропускают билирубин в кровяные капилляры. Если поражена паренхима печени, билирубин проникает через разрушенные печеночные клетки в кровь. Билирубинурия появляется при содержании прямого билирубина в крови выше 3,4 мкмоль/л. Кстати, непрямой билирубин не может пройти через почечный фильтр. Это становится возможным при значительных поражениях почек.

    • Уробилин [показать]

      Уробилин, точнее стеркобилин, всегда находится в незначительном количестве в моче, однако концентрация его резко возрастает при гемолитической и паренхиматозной желтухах. Это связано с потерей печенью способности задерживать и разрушать мезобилиноген (уробилиноген), всосавшийся из кишечника. Напротив, отсутствие в моче уробилиногена при наличии желчных пигментов (билирубина) указывает на прекращение поступления желчи в кишечник вследствие закупорки желчного протока.

    • Порфирины [показать]

      В норме моча содержит лишь очень малые количества порфиринов I типа (до 300 мкг в суточном количестве). Однако выделение порфиринов может резко возрастать (в 10-12 раз) при заболеваниях печени и пернициозной анемии. При врожденной порфирии имеет место сверхпродукпия порфиринов I типа (уропорфирина I и копропорфирина I). В этих случаях в суточном количестве мочи обнаруживается до 100 мг смеси этих порфиринов. При острой порфирии отмечается экскреция с мочой повышенных количеств уропорфирина III, копропорфирина III, а также порфобилиногена.

    Органы Строение Функции
    Почки Кора почек - темный наружный слой, в который погружены микроскопически маленькие почечные тельца - нефроны. Нефрон представляет собой капсулу, состоящую из однослойного эпителия, и извитой почечный каналец. В капсулу погружен клубочек капилляров, образованный разветвлением почечной артерии В нефроне образуется первичная моча. Почечная артерия приносит кровь, подлежащую очистке от конечных продуктов жизнедеятельности организма и избытка воды. В клубочке создается повышенное кровяное давление, благодаря чему через стенки капилляров в капсулу фильтруются вода, соли, мочевина, глюкоза, где они находятся в меньшей концентрации
    Мозговое вещество представлено многочисленными извитыми канальцами, идущими от капсул нефронов и возвращающимися в кору почек. Светлый внутренний слой состоит из собирательных трубок, образующих пирамидки, обращенные вершинами внутрь и заканчивающиеся отверстиями По извитым почечным канальцам, густо оплетенным капиллярами, из капсулы проходит первичная моча. Из первичной мочи в капилляры возвращается (реабсорбируется) часть воды, глюкоза. Оставшаяся более концентрированная вторичная моча поступает в пирамидки
    Почечная лоханка имеет форму воронки, широкой стороной обращенной к пирамидкам, узкой - к воротам почки По трубочкам пирамидок, через сосочки, вторичная моча просачивается в почечную лоханку, где собирается и проводится в мочеточник
    Ворота почки - вогнутая сторона почки, от которой отходит мочеточник. Здесь же в почку входит почечная артерия и отсюда же выходит почечная вена По мочеточнику вторичная моча постоянно стекает в мочевой пузырь. По почечной артерии непрерывно приносится кровь, подлежащая очистке от конечных продуктов жизнедеятельности. После прохождения через сосудистую систему почки кровь из артериальной становится венозной и выносится в почечную вену
    Мочеточники Парные трубки 30-35 см длиной состоят из гладкой мускулатуры, выстланы эпителием, снаружи покрыты соединительной тканью Соединяют почечную лоханку с мочевым пузырем
    Мочевой пузырь Мешок, стенки которого состоят из гладкой мускулатуры, выстланной эпителием Накапливает в течение 3-3,5 ч мочу, при сокращении стенок моча выделяется наружу
    Мочеиспускательный канал Трубка, стенки которой состоят из гладкой мускулатуры, выстланной эпителием Выводит мочу во внешнюю среду

    Регуляция деятельности почек

    Кроме выделения конечных продуктов обмена веществ, почки участвуют в регуляции водно-солевого обмена и поддержании постоянства осмотического давления жидкости тела. В зависимости от концентрации минеральных солей в крови и тканевой жидкости почки выделяют более или менее концентрированную мочу. Нейроны расположенного в гипоталамусе центра жажды возбуждаются при повышении осмотического давления крови и в результате этого увеличивается выделение гипофизом антидиуретического гормона. Этот гормон усиливает реабсорбцию воды в канальцах и, таким образом, уменьшает потерю воды с мочой. При избытке воды в организме антидиуретического гормона выделяется меньше, реабсорбция воды уменьшается и в результате из организма выделяется много мочи с небольшим содержанием органических и неорганических компонентов. Реабсорбцию солей регулируют минералокортикоиды - гормоны коркового слоя надпочечников.

    Выведение мочи из организма - мочеиспускание - регулируется сфинктером мочевого пузыря, который открывается рефлекторно при увеличении давления в мочевом пузыре. Центр, регулирующий работу сфинктера и сокращение стенок мочевого пузыря, расположен в нижней части спинного мозга и находится под контролем коры головного мозга.

    Страница в разработке

В процессе эволюции продукты выделения и механизмы их выведения из организма сильно изменялись. С усложнением организации и переходом в новые среды обитания наряду с кожей и почками появлялись и другие органы выделения или выделительную функцию начинали вторично выполнять уже имеющиеся органы. Выделительные процессы у животных связаны с активизацией их обмена веществ, а также гораздо более сложными процессами жизнедеятельности.

Простейшие освобождаются путём диффузии их через мембрану. Для удаления излишка воды простейшие имеют сократительные вакуоли. Губки и кишечнополостные — продукты обмена удаляют тоже путём диффузии. Первые выделительные органы самого простого строения появляются у плоских червей и немертин . Они носят название протонефридиев, или пламенные клетки. У кольчатых червей в каждом сегменте тела имеется по паре специализированных выделительных органов — метанефридиев. Органами выделения ракообразных являются зелёные железы, расположенные у основания антенн. Моча накапливается в мочевом пузыре, а затем изливается наружу. У насекомых имеются мальпигиевы трубочки, открывающиеся в пищеварительный тракт. Выделительная система у всех позвоночных в основных чертах одинакова: она состоит из почечных телец — нефронов, с помощью которых из крови удаляются продукты метаболизма. У птиц и млекопитающих в процессе эволюции выработалась почка третьего типа — метанефрос, канальцы которой имеют два сильно извитых участка (как у человека) и длинную петлю Генле. В длинных участках почечного канальца происходит обратное всасывание воды, что позволяет животным успешно приспособиться к жизни на суше и экономно расходовать воду.

Таким образом, в различных группах живых организмов можно наблюдать различные органы выделения, адаптирующие данные организмы к выбранной ими среде обитания. Различное строение органов выделения ведёт к появлению различий в количестве и виде выделяемых продуктов обмена веществ. Наиболее общими продуктами выделения для всех организмов являются аммиак, мочевина и мочевая кислота. Далеко не все продукты обмена выводятся из организма. Многие из них являются полезными и входят в состав клеток этого организма.

Пути выделения продуктов обмена веществ

В результате обмена веществ образуются более простые конечные продукты: вода, углекислый газ, мочевина, мочевая кислота и др. они, а также избыток минеральных солей удаляются из организма. Углекислый газ и некоторое количество воды в виде пара выводится через лёгкие. Основное количество воды (около 2 литров) с растворёнными в ней мочевиной, хлористым натрием и другими неорганическими солями выводится через почки и в меньшем количестве через потовые железы кожи. Функцию выделения до некоторой степени выполняет и печень. Соли тяжёлых металлов (меди, свинца), которые случайно попали с пищей в кишечник и являются сильными ядами, а также продукты гниения всасываются из кишечника в кровь и поступают в печень. Здесь они обезвреживаются — соединяются с органическими веществами, теряя при этом токсичность и способность всасываться в кровь, — и с желчью выводятся через кишечник, лёгких и кожи из организма удаляются конечные продукты диссимиляции, вредные вещества, избыток воды и неорганических веществ и поддерживается постоянство внутренней среды.

Органы выделения

Образующиеся в процессе обмена вещества вредные продукты распада (аммиак, мочевая кислота, мочевина и др.) должны быть удалены из организма. Это необходимое условие жизнедеятельности, поскольку накопление их вызывает самоотравление организма и гибель. В выведении ненужных организму веществ участвуют многие органы. Все нерастворимые в воде и, следовательно, не всасывающиеся в кишечнике вещества выводятся с калом. Углекислый газ, вода (частично), удаляются через лёгкие, а вода, соли, некоторые органические соединения — с потом через кожу. Однако большая часть продуктов распада выделяется в составе мочи через мочевыделительную систему. У высших позвоночных животных и у человека выделительная система состоит из двух почек с их выводными протоками — мочеточниками, мочевого пузыря и мочеиспускательного канала, по которому моча выводится наружу при сокращении мускулатуры стенок мочевого пузыря.

Почки — главный орган выделения, так как в них происходит процесс образования мочи.

Строение и работа почек

Почки — парный орган бобовидной формы — расположены на внутренней поверхности задней стенки брюшной полости на уровне поясницы. К почкам подходят почечные артерии и нервы, а отходят от них мочеточники и вены. Вещество почки состоит из двух слоёв: наружный (корковый ) более тёмный, и внутренний (мозговой ) светлый.

Мозговое вещество представлено многочисленными извитыми канальцами, идущими от капсул нефронов и возвращающимися в кору почек. Светлый внутренний слой состоит из собирательных трубок, образующих пирамидки, обращённые вершинами внутрь и заканчивающиеся отверстиями. По извитым почечным канальцами, густо оплетёнными капиллярами, из капсулы проходит первичная моча. Из первичной мочи в капилляры возвращается (реабсорбируется) часть воды, глюкоза. Оставшаяся более концентрированная вторичная моча поступает в пирамидки.

Почечная лоханка имеет форму воронки, широкой стороной обращённой к пирамидкам, узкой — к воротам почки. К ней примыкают две большие чаши. По трубочкам пирамидок, через сосочки, вторичная моча просачивается сначала в малые чашечки (их 8-9 штук), затем в две большие чашечки, а из них в почечную лоханку, где собирается и проводится в мочеточник.

Ворота почки — вогнутая сторона почки, от которой отходит мочеточник. Здесь же в почку входит почечная артерия и отсюда же выходит почечная вена. По мочеточнику вторичная моча постоянно стекает в мочевой пузырь. По почечной артерии непрерывно приносится кровь, подлежащая очистке от конечных продуктов жизнедеятельности. После прохождения через сосудистую систему почки кровь из артериальной становится венозной и выносится в почечную вену.

Мочеточники . Парные трубки 30–35 см длиной, состоят из гладкой мускулатуры, выстланы эпителием, снаружи покрыты соединительной тканью. Соединяют почечную лоханку с мочевым пузырём.

Мочевой пузырь . Мешок, стенки которого состоят из гладкой мускулатуры, выстланной переходным эпителием. У мочевого пузыря выделяют верхушку, тело и дно. В области дна к нему под острым углом подходят мочеточники. От дна же — шейки — начинается мочеиспускательный канал. Стенка мочевого пузыря состоит из трёх слоёв: слизистой оболочки, мышечного слоя и соединительнотканной оболочки. Слизистая оболочка выстлана переходным эпителием, способным собираться в складки и растягиваться. В области шейки мочевого пузыря имеется сфинктер (мышечный сжиматель). Функция мочевого пузыря заключается в накапливании мочи и при сокращении стенок выделять мочу наружу через (3 — 3,5 часа).

Мочеиспускательный канал . Трубка, стенки которой состоят из гладкой мускулатуры, выстланной эпителием (многорядным и цилиндрическим). У выходного отверстия канала имеется сфинктер. Выводит мочу во внешнюю среду.

Каждая почка состоит из огромного количества (около миллиона) сложных образований — нефронов . Нефрон — функциональная единица почки. Капсулы расположены в корковом слое почки, тогда как канальцы — преимущественно в мозговом. Капсула нефрона напоминает шар, верхняя часть которого вдавлена в нижнюю, так что между его стенками образуется щель — полость капсулы.

От неё отходит тоненькая и длинная извитая трубочка — каналец. Стенки канальца, как и каждая из двух стенок капсулы, образованы одним слоем эпителиальных клеток.

Почечная артерия, войдя в почку, делится на большое количество веточек. Тонкий сосуд, называющийся переносящей артерией, заходит во вдавленную часть капсулы, образуя там клубочек капилляров. Капилляры собираются в сосуд, который выходит из капсулы, — выносящую артерию. Последняя подходит к извилистому канальцу и снова распадается на капилляры, оплетающие его. Эти капилляры собираются в вены, которые, сливаясь, образуют почечную вену и выносят кровь из почки.

Нефроны

Структурно-функциональной единицей почки является нефрон, который состоит из капсулы клубочка, имеющей форму двустенного бокала, и канальцев. Капсула охватывает клубочковую капиллярную сеть, в результате формируется почечное (мальпигиево) тельце.

Капсула клубочка продолжается в проксимальный извитый каналец . За ним следует петля нефрона , состоящая из нисходящей и восходящей частей. Петля нефрона переходит в дистальный извитый каналец , впадающий в собирательную трубочку . Собирательные трубочки продолжаются в сосочковые протоки. На всём протяжении канальцы нефрона окружены прилегающими к ним кровеносными капиллярами.

Образование мочи

Моча образуется в почках из крови, которой почки хорошо снабжаются. В основе мочеобразования лежат два процесса — фильтрация и реабсорбция.

Фильтрация происходит в капсулах. Диаметр приносящей артерии больше, чем выносящей, поэтому давление крови в капиллярах клубочка достаточно высокое (70–80 мм рт.ст.). благодаря такому высокому давлению плазма крови вместе с растворёнными в ней неорганическими и органическими веществами проталкивается сквозь тонкую стенку капилляра и внутреннюю стенку капсулы. При этом профильтровываются все вещества с относительно малым диаметром молекул. Вещества с крупными молекулами (белки), а также форменные элементы крови остаются в крови. Таким образом, в результате фильтрации образуется первичная моча , в состав которой входят все компоненты плазмы крови (соли, аминокислоты, глюкоза и другие вещества) за исключением белков и жиров. Концентрация этих веществ в первичной моче такая же, как ив плазме крови.

Образовавшаяся в результате фильтрации в капсулах первичная моча поступает в канальцы. По мере её прохождения по канальцам эпителиальные клетки их стенок отбирают обратно, возвращают в кровь значительное количество воды и необходимые организму вещества. Этот процесс называется реабсорбцией . В отличие от фильтрации он протекает за счёт активной деятельности клеток канальцевого эпителия с затратами энергии и поглощением кислорода. Некоторые вещества (глюкоза, аминокислоты) реабсорбируют полностью, так что во вторичной моче , которая поступает в мочевой пузырь, их нет. Другие вещества (минеральные соли) всасываются из канальцев в кровь в необходимых организму количествах, а остальное количество выводится наружу.

Большая суммарная поверхность почечных канальцев (до 40–50 м 2) и активная деятельность их клеток способствуют тому, что из 150 литров суточной первичной мочи образуется только 1,5–2,0 литра вторичной (конечной). У человека за час образуется до 7200 мл первичной мочи, а выделяется 60–120 мл вторичной. Это значит, что 98–99% её всасывается обратно. Вторичная моча отличается от первичной отсутствием сахара, аминокислот и повышенной концентрацией мочевины (почти в 70 раз).

Непрерывно образующаяся моча по мочеточникам поступает в мочевой пузырь (резервуар мочи), из которого по мочеиспускательному каналу периодически выводится из организма.

Регуляция деятельности почек

Деятельность почек, как и деятельность других выделительных систем, регулируется нервной системой и железами внутренней секреции - главным образом.

гипофизом . Прекращение работы почек неминуемо ведёт к смерти, наступающей в результате отравления организма вредными продуктами обмена веществ.

Функции почек

Почки являются основным органом выделения. Они выполняют в организме множество различных функций.

Функция
Выделительная Почки удаляют из организма избыток воды, органических и неорганических веществ, продукты азотного обмена.
Регуляция водного баланса Позволяет контролировать объём крови, лимфы и внутриклеточной жидкости за счёт изменения объёма выводимой с мочой воды.
Регуляция постоянства осмотического давления жидкостей (осморегуляция) Происходит за счёт изменения количества выводимых осмотически активных веществ.
Регуляция ионного состава жидкостей Обусловлена возможностью избирательного изменения интенсивности экскреции различных ионов с мочой. Влияет также и на кислотноосновное состояние путём экскреции водородных ионов.
Образование и выделение в кровоток физиологически активных веществ Гормоны, витамины, ферменты.
Регуляция Регуляция артериального давления путём изменения объёма циркулирующей в организме крови.
Регуляция эритропоэза Выделяющийся гормон эритропоэтин влияет на активность деления стволовых клеток красного костного мозга, изменяя тем самым количество форменный элементов (эритроцитов, тромбоцитов, лейкоцитов ) в крови.
Образование гуморальных факторов Свёртывание крови (тромбобластина, тромбоксана ), а также участие в обмене физиологического антикоагулянта гепарина.
Метаболистическая Принимают участие в обмене белков, липидов и углеводов.
Защитная Обеспечивают выделение из организма различных токсичных соединений.

Выделение у растений

Растения , в отличие от животных, выделяют лишь небольшие количества азотистых продуктов, которые выводятся в виде аммиака путём диффузии. Водные растения выделяют продукты метаболизма путём диффузии в окружающую среду. Наземные же растения накапливают ненужные вещества (соли и органические вещества — кислоты) в листьях — и освобождаются от них при листопаде или же накапливают их в стеблях и листьях, которые осенью отмирают. За счёт изменения тургорного давления в клетках растения могут переносить даже значительные сдвиги в осмотической концентрации окружающей жидкости до тех пор, пока она остаётся ниже осмотической концентрации внутри клеток. Если же концентрация растворённых веществ в окружающей жидкости выше, чем внутри клеток, то происходит плазмолиз и гибель клеток.

Обмен веществ внутри организма человека приводит к образованию продуктов распада и токсинов, которые, находясь в кровеносной системе в повышенной концентрации, могут привести к отравлению и снижению жизненно важных функций. Чтобы этого не произошло, природа предусмотрела органы выделения, выводящие продукты обмена из организма с мочой и калом.

К органам выделения относятся:

  • почки;
  • кожа;
  • легкие;
  • слюнные и желудочные железы.

Почки избавляют человека от излишней воды, накопившихся солей, токсинов, образовавшихся вследствие потребления слишком жирной пищи, токсинов и алкоголя. Они играют весомую роль в выведение продуктов распада лекарственных препаратов. Благодаря работе почек, человек не страдает от переизбытка различных минералов и азотистых веществ.

Легкие – поддерживают кислородный баланс и являются фильтром как внутренним, так и внешним. Они способствуют эффективному выведению углекислого газа и вредных летучих веществ, образовавшихся внутри организма, помогают избавиться от паров жидкости.

Желудочные и слюнные железы - помогают вывести избыток желчных кислот, кальция, натрия, билирубина, холестерина, а также непереваренные остатки пищи и продукты метаболизма. Органы ЖКТ избавляют организм от тяжелых солей металла, примесей лекарственных средств, ядовитых веществ. Если почки не справляются со своей задачей, нагрузка на данный орган существенно возрастает, что может повлиять на эффективность его работы и привести к сбоям.

Кожа осуществляет обменную функцию через сальные и потовые железы. В процессе потения удаляются излишки воды, солей, мочевины и мочевой кислоты, а также около двух процентов углекислого газа. Сальные железы играют существенную роль в выполнении защитных функций организма, выделяя кожное сало, состоящее из воды и ряда неомыляемых соединений. Оно не дает проникать через поры вредным соединениям. Кожа эффективно регулирует теплоотдачу, оберегая человека от перегрева.

Мочевыделительная система

Главную роль среди органов выделения человека занимает почки и мочевыделительная система, к которым относятся:

  • мочевой пузырь;
  • мочеточник;
  • мочеиспускательный канал.

Почки представляют собой парный орган, имеющий форму бобовых, длиной около 10-12 см. Важный орган выделения находится в поясничном отделе человека, защищен плотной жировой прослойкой и несколько подвижен. Вот почему, он мало подвержен травмам, но чувствителен к внутренним изменениям внутри организма, питанию человека и негативным факторам.

Каждая из почек у взрослого человека весит порядка 0,2 кг и состоит из лоханки и основного сосудисто-нервного пучка, соединяющий орган с выделительной системой человека. Лоханка служит для связи с мочеточником, а тот с мочевым пузырем. Такое строение органов выделения мочи позволяет полностью замкнуть цикл кровообращения и эффективно выполнять все возложенные функции.

Структура обоих почек представляет собой два соединенных между собой слоя:

  • корковый – состоит из клубочков нефронов, служит основой для функции почек;
  • мозговой – содержит в себе сплетение кровеносных сосудов, снабжает орган необходимыми веществами.

Почки перегоняют через себя всю кровь человека за 3 минуты, в связи с чем являются основным фильтром. Если фильтр повреждается, появляется воспалительный процесс или почечная недостаточность, продукты обмена не попадают через мочеточник в мочеиспускательный канал, а продолжают свое движение по организму. Токсины частично выводятся с потом, с продуктами метаболизма через кишечник, а также через легкие. Однако, полностью покинуть организм не могут, в связи с чем развивается острая интоксикация, которая несет угрозу жизни человека.

Функции мочевыделительной системы

Основные функции органов выделения заключаются в выведении из организма шлаков и избытка минеральных солей. Так как основную роль выделительной системы человека выполняют почки, важно понимать, как именно они очищают кровь и что может помешать их нормальной работе.

Когда кровь попадает в почки, она попадает в их корковый слой, где за счет клубочков нефрона происходит грубая фильтрация. Крупные белковые фракции и соединения возвращаются в кровеносное русло человека, снабжая его всеми необходимыми веществами. Мелкий мусор отправляется в мочеточник, чтобы вместе с мочой покинуть организм.

Здесь проявляет себя канальцевая реабсорбция, в ходе которой происходит обратное всасывание полезных веществ из первичной мочи в кровь человека. Некоторые вещества подвергаются реабсорбции с рядом особенностей. В случае переизбытка глюкозы в крови, что часто возникает при развитии сахарного диабета, почки не могут справиться со всем объемом. Некоторое выделяемое количество глюкозы может появиться в моче, что сигнализирует о развитии грозного заболевания.

При переработке аминокислот случается, что одновременно в крови могут находиться несколько подвидов, переносимых одинаковыми переносчиками. В этом случае реабсорбация может тормозиться и нагружать орган. Белок в норме не должен проявляться в моче, но при некоторых физиологических состояниях (высокая температура, тяжелая физическая работа) может быть обнаружен на выходе в небольших количествах. Такое состояние требует наблюдения и контроля.

Таким образом, почки в несколько этапов полностью фильтруют кровь, не оставляя вредных веществ. Однако, из-за переизбытка токсинов в организме, работа одного из процессов в мочевыделительной системе может быть нарушена. Это не является патологией, но требует консультации специалиста, так как при постоянных перегрузках орган быстро выходит из строя, нанося серьезный урон здоровью человека.

Кроме фильтрации, мочевыводительная система:

  • регулирует баланс жидкости в организме человека;
  • поддерживает кислотно-щелочной баланс;
  • принимает участие во всех обменных процессах;
  • регулирует артериальное давление;
  • вырабатывает необходимые ферменты;
  • обеспечивает нормальный гормональный фон;
  • способствует улучшению всасывания в организм витаминов и минеральных веществ.

Если почки перестают работать, вредные фракции продолжают блуждать по сосудистому руслу, увеличивая концентрацию и приводя к медленному отравлению человека продуктами обмена. Потому, так важно поддерживать их нормальную работу.

Профилактические меры

Чтобы вся система выделения работала слаженно, необходимо тщательно следить за работой каждого из органов, относящихся к ней, и при малейшем сбое обращаться к специалисту. Для полноценной работы почек необходима гигиена органов выделения мочевыводительной системы. Лучшая профилактика в этом случае – минимальное количество вредных веществ, потребляемых организмом. Необходимо внимательно следить за питанием: не употреблять алкоголь в больших количествах, снизить содержание в рационе соленых, копченых, жаренных продуктов, а также продуктов, перенасыщенных консервантами.

Другие органы выделения человека также нуждаются в гигиене. Если говорить о легких, то необходимо ограничить нахождение в запыленных помещениях, местах скопления ядохимикатов, замкнутых пространствах с повышенным содержанием аллергенов в воздухе. Также следует не допускать болезней легких, раз в год проводить флюорографическое исследование, вовремя устранять очаги воспаления.

Не менее важно поддерживать нормальную работу желудочно-кишечного тракта. Из-за недостаточной выработки желчи или наличие воспалительных процессов в кишечнике или желудке, возможно возникновение бродильных процессов с выделением продуктов гниения. Попадая в кровь, они вызывают проявления интоксикации и могут привести к необратимым последствиям.

Что касается кожных покровов, то здесь все просто. Следует регулярно очищать их от различных загрязнений и бактерий. Однако, нельзя переусердствовать. Излишнее использование мыла и других моющих средств может нарушить работу сальных желез и привести ко снижению естественной защитной функции эпидермиса.

Органы выделения точно распознают, клетки каких веществ необходимы для поддержания всех жизненных систем, а какие могут нанести вред. Все лишнее они отсекают и выводят с потом, выдыхаемым воздухом, мочой и калом. Если система перестает работать, человек умирает. Потому, важно следить за работой каждого органа и при ухудшении самочувствия незамедлительно обращаться к специалисту для обследования.


Продукты выделения

Конечные продукты диссимиляции - главные объекты выделения. Это углекислый газ и вода - конечные продукты окисления всех веществ и аммиак, образующийся только при окислении белков и других азотсодержащих продуктов.

Аммиак - один из конечных продуктов азотистого обмена. Большая часть азота, образующегося в ходе процессов белкового обмена, выделяется из организма именно в виде аммиака. Аммиак растворим в воде. Он чрезвычайно токсичен и легко проникает сквозь мембраны всех клеток организма. Выделение аммиака из организма происходит крайне быстро. И хотя в течение суток в организме человека расщепляется около 100 г белка, что эквивалентно освобождению 19,3 г аммиака, концентрация его в крови не превышает 0,001мг%. В моче концентрация аммиака также относительно мала, и составляет примерно 0,04%. Это связано с тем, что образующийся и подлежащий выведению из организма аммиак превращается и выводится в виде значительно менее токсичного соединения - мочевины.

Мочевина образуется, главным образом, в печени. Количество мочевины, выводимой с мочой в сутки, составляет примерно 50-60 г. Таким образом, продукты азотистого обмена практически выводятся с мочой в виде мочевины.

Часть азота выводится из организма в виде мочевой кислоты, образующейся при расщеплении пуринов. К другим конечным азотсодержащим продуктам белкового обмена относятся производные гуанидина - креатин и креатинин. Эти вещества - главные азотосодержащие компоненты мочи, так называемый " азот мочи".

Органы выделения

Процессы выделения, или экскреции, освобождают организм от чужеродных токсических веществ, а также от избытка солей. К органам выделения относят почки, легкие, кожу, потовые железы, пищеварительные железы, слизистую оболочку желудочно-кишечного тракта и др.

Легкие как орган выделения

Легкие выводят из организма летучие вещества, например, пары эфира и хлороформа при наркозе, пары алкоголя. Легкие также выводят из организма углекислый газ и пары воды.

Пищеварительные железы

Пищеварительные железы и слизистая оболочка желудочно-кишечного тракта выделяют некоторые тяжелые металлы, ряд лекарственных веществ (морфий, хинин, салицилаты), чужеродные органические соединения (например, краски).

Печень

Важную экскреторную функцию выполняет печень, удаляя из крови гормоны (тироксин, фолликулин), продукты обмена гемоглобина, продукты азотистого метаболизма и многие другие вещества.

Поджелудочная железа

Поджелудочная железа, как и кишечные железы, помимо экскреции солей тяжелых металлов выделяет пурины и лекарственные вещества. Выделительная функция пищеварительных желез особо проявляет себя при нагрузке организма избыточным количеством различных веществ или увеличении их продукции в организме. Дополнительная нагрузка вызывает изменение скорости их экскреции не только почкой, но и пищеварительной трубкой.

Кожа

С потом из организма выделяются вода и соли, некоторые органические вещества, в частности, мочевина, мочевая кислота, а при напряженной мышечной работе - молочная кислота. Особое место среди органов выделения занимают сальные и молочные железы, так как выделяемые ими вещества - кожное сало и молоко - не являются " шлаками" обмена веществ, а имеют важное физиологическое значение.

Почки

Посредством почек экскреции в первую очередь подлежат конечные продукты обмена (диссимиляции). Первый тип экскреции связан с тем, что почки выделяют конечные продукты азотистого (белкового) обмена и воду. Выведение конечных продуктов белкового обмена связано и с процессами предварительного синтеза веществ. Это второй, более сложный по механизму способ экскреции в организме.

Количество и состав мочи

В сутки из организма человека выводится до 1,5 л мочи. Моча на 95 % состоит из воды; 5% приходится на долю твердых веществ. Ее главные составные части - конечные продукты азотистого обмена: мочевина (2%), мочевая кислота (0,5%), креатинин (0,075%). Остальное приходится, главным образом, на долю солей. За сутки с мочой выводится в среднем 30 г мочевины и 25-30 г ее органических солей. Удельный вес мочи 1020. Активная реакция может быть кислой, нейтральной или щелочной.


Почки и их роль в организме

Функции почек

Значение почек для организма не исчерпывается только их экскреторной функцией.

К невыделительным функциям почек относятся, во-первых, их участие в обмене белков и углеводов. Во-вторых, почки как основной орган выработки эритропоэтинов, участвуют в процессах эритропоэза. В третьих, в почках вырабатываются ряд биологически активных веществ, например, простогландины и ренин, что обуславливает гормональную функцию почек. Кроме того, почки выполняют разные по механизму защитные функции. Почки также принимают участие в регуляции артериального давления. Наконец, почки - это один из главных органов, стоящих на страже констант жидкой внутренней среды организма: рН, осмотического давления, объема жидкой внутренней среды организма.

Таким образом, почка является органом, участвующим в обеспечении постоянства основных физико-химических констант крови и других вне - и внутриклеточных жидкостей организма, циркуляторного гомеостаза, регуляции обмена различных органических и неорганических веществ.

В основе перечисленных функций почки лежат процессы, происходящие в ее паренхиме: ультрафильтрация в клубочках, реабсорбция и секреция веществ в канальцах.

Особенности кровообращения в почках

В обычных условиях через обе почки, составляющие лишь около 0,43% массы тела здорового человека, проходит от 1/4 до 1/5 объема крови, выбрасываемой сердцем. Кровоток в корковом веществе почек достигает 4-5 мл/мин на 1 грамм ткани - это наиболее высокий уровень органного кровотока.

В почках выделяют систему коркового и мозгового кровотока. Хотя емкость сосудистого русла у них примерно одинакова, около 94% крови протекает по системе корковых сосудов и лишь 6% по системе мозговых. Корковый кровоток тесно связан с капиллярами клубочка. Одна из главных особенностей отличающих корковый кровоток от мозгового состоит в том, что в широких пределах изменения артериального давления (от 90 до 190 мм рт. ст.) корковый кровоток почки остается почти постоянным. Это обусловлено специальной системой саморегуляции - ауторегуляции кортикального кровотока. Ауторегуляция коркового кровотока обеспечивает постоянство процессов, лежащих в основе мочеобразования в условиях значительных изменений внепочечной гемодинамики.

Нефрон как структурно-функциональная единица почек

В каждой почке человека около 1 млн нефронов, являющихся ее функциональными единицами. В нефроне происходят основные процессы, определяющие разнообразные функции почек. Каждый нефрон включает в себя клубочек с капсулой, извитой каналец первого порядка, петлю Генле, извитой каналец второго порядка и собирательную трубку.

В разных отделах нефрона протекают разные процессы, определяющие функции почек. С этим связано и расположение частей нефрона. Так клубочек и капсула вместе с извитыми канальцами расположены в корковом веществе почек, тогда как петля Генле и собирательные трубки уходят глубоко в их мозговое вещество.


Процессы, лежащие в основе мочеобразования

В клубочках происходит начальный этап мочеобразования - фильтрация из плазмы крови в капсулу почечного клубочка безбелковой жидкости - первичной мочи. Второй этап связан с тем, что эта жидкость движется по канальцам, где вода и растворенные в ней вещества с разной скоростью подвергаются обратному всасыванию. Третий процесс - канальцевая секреция - состоит в том, что клетки эпителия нефрона захватывают некоторое количество вещества из крови и межклеточной жидкости и переносят их в просвет канальца.



 

Возможно, будет полезно почитать: