Орган продуцент тропных гормонов. Выведение гормонов из клеток-продуцентов и транспорт гормонов кровью

Год выпуска: 2003

Жанр: Физиология

Формат: DjVu

Качество: Отсканированные страницы

Описание: При подготовке учебника «Физиология человека» авторы поставили перед собой задачи: дополнить учебник достижениями науки за последние годы; представить современные методы исследования функций у человека, заменив ими устаревшие; улучшить логику подачи материала в целях облегчения понимания студентами закономерностей протекания физиологических функций. В основу представлений о жизнедеятельности положена интеграция современных данных, полученных на молекулярном, органном, системном и организменном уровнях. Организм человека рассматривается в учебнике «Физиология человека» как целостная система, находящаяся в постоянном взаимодействии с многообразием влияний окружающей, в том числе социальной, среды.

Учебник «Физиология человека» предназначен для студентов медицинских вузов и факультетов.

Физиология: предмет, методы, значение для медицины. Краткая история. - В.М. Покровский, Г.Ф. Коротько
Физиология, ее предмет и роль в системе медицинского образования
Становление и развитие методов физиологических исследований
Принципы организации управления функциями - В.П. Дегтярев

Управление в живых организмах
Саморегуляция физиологических функций
Системная организация управления. Функциональные системы и их взаимодействие

Организм и окружающая среда. Адаптация
Краткая история физиологии

Возбудимые ткани
Физиология возбудимых тканей - В.И. Кобрин

Строение и основные функции клеточных мембран.
Основные свойства клеточных мембран и ионных каналов
Методы изучения возбудимых клеток
Потенциал покоя
Потенциал действия.
Действие электрического тока на возбудимые ткани

Физиология нервной ткани - Г.Л. Кураев

Строение и морфофункциональная классификация нейронов
Рецепторы. Рецепторный и генераторный потенциалы
Афферентные нейроны
Вставочные нейроны
Эфферентные нейроны
Нейроглия
Проведение возбуждения по нервам

Физиология синапсов - Г.Л. Кураев
Физиология мышечной ткани

Скелетные мышцы - В.И. Кобрин

Классификация скелетных мышечных волокон
Функции и свойства скелетных мышц
Механизм мышечного сокращения
Режимы мышечного сокращения
Работа и мощность мышцы
Энергетика мышечного сокращения
Теплообразование при мышечном сокращении
Скелетно-мышечное взаимодействие
Оценка функционального состояния мышечной системы у человека

Гладкие мышцы - Р.С. Орлов

Классификация гладких мышц
Строение гладких мышц
Иннервация гладких мышц
Функции и свойства гладких мышц

Физиология железистой ткани - Г.Ф. Коротько

Секреция
Многофункциональность секреции
Секреторный цикл
Биопотенциалы гландулоцитов
Регуляция секреции гландулоцитов

Нервная регуляция физиологических функций
Механизмы деятельности центральной нервной системы - O.Е. Чораян

Методы исследования функций центральной нервной системы
Рефлекторный принцип регуляции функций
Торможение в центральной нервной системе
Свойства нервных центров
Принципы интеграции и координации в деятельности центральной нервной системы
Нейронные комплексы
Гематоэнцефалический барьер
Цереброспинальная жидкость
Элементы кибернетики нервной системы

Физиология центральной нервной системы - Г. А. Кураев

Спинной мозг

Морфофункциональная организация спинного мозга
Особенности нейронной организации спинного мозга
Проводящие пути спинного мозга
Рефлекторные функции спинного мозга

Ствол мозга

Продолговатый мозг
Мост
Средний мозг
Ретикулярная формация ствола мозга
Промежуточный мозг

Таламус

Мозжечок

Лимбическая система

Гиппокамп
Миндалевидное тело
Гипоталамус

Базальные ядра

Хвостатое ядро. Скорлупа
Бледный шар
Ограда

Кора большого мозга

Морфофункциональная организация
Сенсорные области
Моторные области
Ассоциативные области
Электрические проявления активности коры большого мозга
Межполушарные взаимоотношения

Координация движений - B.C. Гурфинкель, Ю.С. Левик

Физиология автономной (вегетативной) нервной системы - А.Д. Ноздрачев

Функциональная структура автономной нервной системы

Симпатическая часть
Парасимпатическая часть
Метасимпатическая часть

Особенности конструкции автономной нервной системы
Автономный (вегетативный) тонус
Синаптическая передача возбуждения в автономной нервной системе
Влияние автономной нервной системы на функции тканей и органов

Гормональная регуляция физиологических функций - В.А. Ткачук, О.Е. Осадчий
Принципы гормональной регуляции

Методы исследования

Образование, выведение из эндокринных клеток, транспорт кровью и механизмы действия гормонов

Синтез гормонов
Выведение гормонов из клеток-продуцентов и транспорт гормонов кровью
Молекулярные механизмы действия гормонов

Эндокринные железы и физиологическая роль их гормонов

Гипофиз
Щитовидная железа
Околощитовидные железы
Надпочечники
Поджелудочная железа
Половые железы

Эндотелий как эндокринная ткань

Система крови - Б.И. Кузник
Понятие о системе крови

Основные функции крови
Количество крови в организме

Состав плазмы крови

Физико-химические свойства крови

Форменные элементы крови

Эритроциты

Гемоглобин и его соединения

Цветовой показатель
Гемолиз
Функции эритроцитов

Гемопоэз

Основные условия нормального гемопоэза
Физиология эритропоэза
Факторы, обеспечивающие эритропоэз

Лейкоциты

Физиологические лейкоцитозы Лейкопении
Лейкоцитарная формула
Характеристика отдельных видов лейкоцитов
Физиология лейкопоэза
Факторы, обеспечивающие леикопоэз
Неспецифическая резистентность
Иммунитет

Группы крови

Система АВО
Система резус (Rh-hr) и другие
Группы крови и заболеваемость

Тромбоциты
Система гемостаза

Сосудисто-тромбоцитарный гемостаз
Процесс свертывания крови

Плазменные и клеточные факторы свертывания крови
Механизм свертывания крови

Естественные антикоагулянты
Фибринотиз
Регуляция свертывания крови и фибринолиза

Инструментальные методы исследования системы крови
Крово- и лимфообращение - В.М. Покровский, Г. И. Косицкий
Деятельность сердца

Электрические явления в сердце, возникновение и проведение возбуждения

Электрическая активность клеток миокарда
Функции проводящей системы сердца
Динамика возбудимости миокарда и экстрасистола
Электрокардиограмма

Нагнетательная функция сердца

Сердечный цикл
Сердечный выброс
Механические и звуковые проявления сердечной деятельности
Методы исследования функций сердца

Регуляция деятельности сердца

Внутрисердечные регуляторные механизмы
Внесердечные регуляторные механизмы
Влияние центральной нервной системы на деятельность сердца
Рефлекторная регуляция деятельности сердца
Условнорефлекторная регуляция деятельности сердца
Гуморальная регуляция деятельности сердца

Интеграция механизмов регуляции деятельности сердца

Эндокринная функция сердца

Функции сосудистой системы

Основные принципы гемодинамики. Классификация сосудов
Движение крови по сосудам

Артериальное давление крови и периферическое сопротивление
Артериальный пульс
Объемная скорость кровотока
Движение крови в капиллярах. Микроциркуляция
Движение крови в венах
Время кругооборота крови

Регуляция движения крови по сосудам

Иннервация сосудов
Сосудодвигательный центр
Гуморальные влияния на сосуды
Физиологические системы регуляции артериального давления
Перераспределительные реакции в системе регуляции кровообращения
Регуляция объема циркулирующей крови. Кровяные депо
Изменения деятельности сердечно-сосудистой системы при работе

Регионарное кровообращение - Я.Л. Хаианашвили

Коронарное кровообращение
Кровоснабжение головного и спинного мозга

Легочное кровообращение

Лимфообращение - Р.С. Орлов

Строение лимфатической системы
Образование лимфы
Состав лимфы
Движение лимфы
Функции лимфатической системы

Дыхание - A.Б. Чучалин, В.М. Покровский
Сущность и стадии дыхания
Внешнее дыхание - А. В. Черняк

Биомеханика дыхательных движений
Дыхательные мышцы
Изменения давления в легких
Плевральное давление
Эластические свойства легких
Растяжимость легких
Эластические свойства грудной клетки
Сопротивление в дыхательной системе
Работа дыхания

Вентиляция легких - З.Р. Айсанов, Е.А. Малигонов

Легочные объемы и емкости
Количественная характеристика вентиляции легких
Альвеолярная вентиляция

Газообмен и транспорт газов - С.И. Авдеев, Е.А. Малигонов

Диффузия газов
Транспорт кислорода
Кривая диссоциации оксигсмоглобина
Доставка кислорода и потребление кислорода тканями
Транспорт углекислого газа

Регуляция внешнего дыхания - В.Ф. Пятин

Дыхательный центр
Рефлекторная регуляция дыхания
Координация дыхания с другими функциями организма

Особенности дыхания при физической нагрузке и при измененном парциальном давлении газов - З.Р. Айсанов

Дыхание при физической нагрузке
Дыхание при подъеме на высоту
Дыхание чистым кислородом
Дыхание при высоком давлении.

Недыхательные функции легких - Е.А. Малигонов, А.Г. Похотько

Защитные функции дыхательной системы

Механические факторы защиты
Клеточные факторы защиты
уморальные факторы защиты

Метаболизм биологически активных веществ в легких

Пищеварение - Г.Ф. Коротько
Голод и насыщение
Сущность пищеварения и его организация

Пищеварение и его значение
Типы пищеварения
Конвейерный принцип организации пищеварения

Пищеварительные функции

Секреция пищеварительных желез
Моторная функция пищеварительного тракта
Всасывание

Регуляция пищеварительных функций

Управление пищеварительной деятельностью
Роль регуляторных пептидов и аминов в деятельности пищеварительного тракта
Кровоснабжение пищеварительного тракта и его функциональная активность
Периодическая деятельность органов пищеварения

Методы изучения пищеварительных функций

Экспериментальные методы
Методы исследования пищеварительных функций у человека

Пищеварение в полости рта и глотание

Прием пищи
Жевание
Слюноотделение
Глотание

Пищеварение в желудке

Секреторная функция желудка
Моторная деятельность желудка
Эвакуация содержимого желудка в двенадцатиперстную кишку
Рвота

Пищеварение в тонкой кишке

Секреция поджелудочной железы

Образование, состав и свойства поджелудочного сока

Желчеобразование и желчевыделение
Кишечная секреция
Полостной и пристеночный гидролиз питательных веществ в тонкой кишке
Моторная деятельность тонкой кишки
Всасывание различных веществ в тонкой кишке

Функции толстой кишки

Поступление кишечного химуса в толстую кишку
Роль толстой кишки в пищеварении
Моторная деятельность толстой кишки
Газы толстой кишки
Дефекация
Микрофлора пищеварительного тракта

Функции печени
Пищеварительные функции и двигательная активность человека

Влияние гипокинезии
Влияние гиперкинезии

Непищеварительные функции пищеварительного тракта

Экскреторная деятельность пищеварительного тракта
Участие пищеварительного тракта в водно-солевом обмене
Эндокринная функция пищеварительного тракта и выделение в составе секретов физиологически активных веществ
Инкреция (эндосекреция) пищеварительными железами ферментов
Иммунная система пищеварительного тракта

Обмен веществ и энергии. Питание - В.М. Покровский
Обмен веществ

Обмен белков
Обмен липидов
Обмен углеводов
Обмен минеральных солеи и воды

Теплоотдача - физическая терморегуляция
Регуляция изотермии

Гипотермия
Гипертермия

Выделение. Физиология почки - Ю.В. Наточин
Общая характеристика
Почки и их функции

Методы изучения функций почек
Нефрон и его кровоснабжение
Процесс мочеобразования

Клубочковая фильтрация
Канальцевая реабсорбция
Канальцевая секреция

Определение величины почечного плазмо- и кровотока
Синтез веществ в почках
Осмотическое разведение и концентрирование мочи
омеостатическис функции почек
Экскреторная функция почек
Инкреторная функция почек
Метаболическая функция почек
Принципы регуляции реабсорбции и секреции веществ в клетках почечных канальцев
Регуляция деятельности почек
Количество, состав и свойства мочи
Мочеиспускание
Последствия удаления почки и искусственная почка
Возрастные особенности структуры и функции почек

Репродуктивная функция - И. И. Куценко
Половая дифференциация
Половое созревание
Половое поведение человека
Физиология женских половых органов
Физиология мужских половых органов
Физиология беременности
Физиология родов и послеродового периода
Адаптация организма новорожденного к условиям внеутробной жизни
Лактация

Сенсорные системы - М.А. Островский, И.А. Шевелев
Общая физиология сенсорных систем

Методы исследования сенсорных систем
Общие принципы строения сенсорных систем
Основные функции сенсорной системы
Механизмы переработки информации в сенсорной системе
Адаптация сенсорной системыВиды условных рефлексовРегуляция биологических часов млекопитающих

Литература

Гормоны – биологически активные соединения, вырабатываемые в кровь железами внутренней секреции и влияющие на обмен веществ. Известно более 50 гормонов. 10 – 10 ммоль/л – физиологическая концентрация гормонов. -6 —

Секреция гормонов стимулируется внешними и внутренними сигналами, поступающими в ЦНС. Сигналы поступают в гипоталамус, где стимулируют синтез рилизинг-гормонов: либеринов (7), статинов (3). Рилизинг-гормоны стимулируют или тормозят синтез тропных гормонов гипофиза, которые стимулируют синтез и секрецию гормонов эндокринных желёз. Изменение концентрации метаболитов в клетках-мишенях подавляет синтез гормонов, действуя на эндокринные железы либо на гипоталамус. Синтез тропных гормонов подавляется гормонами периферических желёз.

Особенности действия гормонов на органы и ткани дистантность, высокая биологическая активность 10 М, специфичность, действуют на органы – мишени, у органов-мишеней есть рецепторы (гликопротеины). -7 Рецептор для инсулина

Конечные эффекты действия гормонов изменение проницаемости клеточных мембран, изменение активности внутриклеточных ферментов, изменение интенсивности синтеза белков (через регуляцию их синтеза).

Скорость выделения гормонов меняется в течение суток (суточные ритмы). Больше гормонов выделяется зимой, меньше летом. Имеются возрастные особенности выделения гормонов. Выделение гормонов может измениться в любом возрасте, что ведёт к нарушению обмена веществ и развитию патологии. Недостаток тироксина приводит к кретинизму, избыток – к токсическому зобу. Недостаток инсулина ведёт к развитию сахарного диабета, избыток – к гиперинсулинизму.

Нарушения гормональной регуляции могут возникать в результате расстройства высшей нейрогормональной регуляции деятельности эндокринной железы (нарушение управления), из-за прямого поражения железы (инфекция, опухоль, интоксикация, травма), как проявление недостаточности субстрата (нарушается синтез гормона). как нарушение секреции, транспорта гормона, из-за изменений условий действия гормонов (электролитная среда ткани) нарушения рецепторов: — появление антител против рецепторов, -при отсутствии или дефиците рецепторов, -при нарушени регуляции рецепторов, при усиленном выведении гормонов (с мочой, желчью).

Гипосекреция гормонов зависит от генетических факторов (отсутствие фермента синтеза гормона), диетических факторов (гипотиреоз из-за недостаточности йода в диете), токсических факторов (некроз коры надпочечников под действием производных инсектицидов), иммунологических факторов (появление антител, разрушающих железу), наличия инфекции, туберкулёза, опухоли.

Гиперсекреция гормонов при гормонально активных опухолях (акромегалия при опухоли гипофиза), при аутоиммунные процессах (при тиреотоксикозе).

Период полужизни – время существования гормона в крови адреналин существует в крови секунды, стероидные гормоны – часы, тиреоидные гормоны – дни. В периферических тканях некоторые гормоны превращаются в более активные соединения.

Классификация гормонов по месту выработки, по химической природе, по влиянию на обмен веществ, по типу гуморального влияния.

Классификация гормонов по влиянию на обмен веществ По отношению к обмену белков выделяют катаболики и анаболики. По действию на углеводный обмен — гипергликемические и гипогликемические. По отношению к обмену липидов – липолитические и липогенетические.

Классификация гормонов по типу гуморального влияния Гормональное влияние. Из клетки-продуцента гормон поступает в кровь и с током крови подходит к органу-мишени, действуя дистантно. Паракринное влияние. Из клетки-продуцента гормон поступает во внеклеточное пространство и действует на клетки-мишени, которые расположены вблизи. Изокринное влияние. Из клетки-продуцента гормон поступает во внеклеточное пространство и в тесно контактирующую с ним клетку-мишень. Нейрокринное влияние. Гормон секретируется в синаптическую щель. Аутокринное влияние. Клетка-продуцент является и клеткой-мишенью.

Классификация гормонов по химической природе Белки: простые – инсулин, СТГ, сложные – ТТГ, ФСГ, Пептиды: вазопрессин, окситоцин, глюкагон, тиреокальцитонин, АКТГ, соматостатин. Производные АМК: адреналин, тироксин. Гормоны стероидной природы. Производные жирных кислот: простагландины.

Классификация гормонов по локализации рецепторов Гормоны, связывающиеся с внутриклеточными рецепторами в клетках-мишенях. К ним относятся стероидные и тиреоидные гормоны. Все они липофильны. После секреции связываются с транспортными белками, проходят сквозь плазматическую мембрану и связываются с рецептором в цитоплазме или ядре. Образуется комплекс гормон-рецептор. Он транспортируется в ядро, взаимодействует с ДНК, активируя или ингибируя гены, что приводит к индукции или репрессии синтеза белка, изменению количества белков (ферментов). Основной эффект достигается на уровне транскрипции генов.

Механизм действия липофильных гормонов Секреция гормона Связывание с транспортными белками Транспорт сквозь плазматическую мембрану Связывание с рецептором в цитоплазме или ядре Образование комплекса гормон-рецептор Транспорт комплекса в ядро Взаимодействие с ДНК Индукция синтеза белка Изменение количества белков (ферментов) Активация генов Ингибирование генов Репрессия синтеза белка

Гормоны, связывающиеся с рецепторами на поверхности клетки водорастворимые, белковой природы, Гормон действует на рецептор, а затем действие идёт через вторичных посредников: ц. АМФ, ц. ГМФ, кальций, инозитол-3 -фосфат (И-3 -Ф), диацилглицерол (ДАГ). Так действуют гормоны: СТГ, пролактин, инсулин, окситоцин, фактор роста нервов.

Циклические нуклеотиды – универсальные посредники действия различных факторов на клетки и организм. АТФ ц. АМФ + ФФн ГТФ ГМФ + ФФн гуанилатциклаза аденилатциклаза

Аденилатциклаза имеет две субъединицы: рецепторную, каталитическую. Гормон взаимодействует с рецепторной субъединицей, что переводит каталитическую в активное состояние.

Белок G встроен в мембрану и в комплексе с ионами магния и ГТФ активирует аденилатциклазу. Преобразование сигнала G -белками

Рецептор гормона, белок G , аденилатциклаза – 3 независимых белка, которые сопряжены функционально.

ц. АМФ вторичный посредник для АКТГ, ТТГ, ФСГ, ЛГ, МСГ, вазопрессина, катехоламинов, глюкагона, паратгормона, кальцитонина, секретина, тиролиберина, липотропина.

Гормоны, ингибирующие аденилатциклазу ацетилхолин, соматостатин, ангиотензин II , фосфодиэстераза катализирует превращение циклических нуклеотидов в нециклические 5 -нуклеозидмонофосфаты.

Гуанилатциклаза – гем-содержащий фермент. NO при взаимодействии с гемом гуанилатциклазы способствует быстрому образованию ц. ГМФ, который снижает силу сердечных сокращений. ц. ГМФ действует через протеинкиназу.

Механизм действия Содержание кальция внутри клеток мало. 1. Гормон действует на рецептор G -белок Са поступает в клетку Са действует на активность ферментов, ионных насосов, каналов проницаемости.

2. Механизм действия: Са-кальмодулин Инициация Фосфорилирование протеинкиназы белков

Комплекс Са-кальмодулин изменяет активность ферментов двумя способами: 1. путём прямого взаимодействия с ферментом-мишенью, 2. через активируемую этим комплексом протеинкиназу. активирует аденилатциклазу только при низких концентрациях кальция, а при дальнейшем повышении концентрации кальция происходит ингибирование аденилатциклазы. способен активировать фосфодиэстеразу млекопитающих.

Ферменты, регулируемые Са-кальмодулином аденилатциклаза, фосфодиэстераза, гликогенсинтаза, гуанилатциклаза, пируваткиназа, пируватдегидрогеназа, пируваткарбоксилаза, фосфолипаза А 2 , миозинкиназа. Са-кальмодулин – вторичный посредник для вазопрессина и катехоламинов.

Фосфатидилинозитол-4, 5 -бисфосфат предшественник двух вторичных посредников (диацилглицерола, инозитол-3 -фосфата), находится с внутренней стороны плазматической мембраны и подвергается гидролизу в ответ на сигнал от рецептора.

Диацилглицерол и инозитол-3 -фосфат — вторичные посредники для вазопрессина, брадикинина, ангиотензина II , серотонина.

Инозитол-3 -фосфат повышает концентрацию кальция: 1. кальций высвобождается из эндоплазматического ретикулума клетки, митохондрий, 2. регулирует вход кальция через канал.

Диацилглицерол повышает сродство протеинкиназы С и кальция. Протеинкиназа С фосфорилирует многие белки. Диацилглицерол – вторичный посредник для: АКТГ, серотонина, ЛГ.

В структуре мембранных рецепторов выделяют 3 функционально разных участка 1. Обеспечивает узнавание и связывание гормона. 2. Трансмембранный. 3. Цитоплазматический участок. У инсулина это тирозинкиназа.

Простагландины – гидроксилированные продукты превращения полиненасыщенных жирных кислот. представляют собой тканевые гормоны, не являются истинными гормонами, но служат вторичными посредниками, состоят из 20 атомов углерода и включают циклопентановое кольцо. В организме человека существует 14 простагландинов.

В зависимости от структуры пятичленного кольца простагландины делят на 4 группы: А, Б, Е, Ф. Число двойных связей указывают в виде индекса: ПГА 1 Субстрат для образования простагландинов – арахидоновая кислота. Ингибиторы биосинтеза простагландинов: группа салициловой кислоты, сульфаниламиды.

Биологическая роль простагландинов способствуют сокращению матки во время родов, антиадгезивное действие, препятствуют тромбозам, провоспалительное действие, антилиполитический эффект, инсулиноподобное действие на обмен глюкозы в жировой ткани, регулируют почечный кровоток, повышают диурез, ПГЕ и ПГФ расслабляют дыхательную мускулатуру, седативное действие, усиливают сократительную способность миокарда, антисекреторный эффект, антиульцерогенное действие, медиаторы лихорадки

Применение простагландинов при астме, для лечения тромбов, для снижения артериального давления, для стимуляции родовой деятельности.

Тромбоксаны синтезируются в — тромбоцитах, — ткани мозга, — лёгких, — селезёнке, — почках. вызывают: — агрегацию тромбоцитов, — мощное сосудосуживающее действие

Простациклины синтезируются в: — эндотелии сосудов, — миокарде, — матке, — слизистой желудка.

Лейкотриены способствуют сокращению гладкой мускулатуры дыхательных путей, ЖКТ, регулируют тонус сосудов, обладают сосудосуживающим действием. Основные биологические эффекты лейкотриенов связаны с воспалением, аллергией, анафилаксией, иммунными реакциями.

Гормоны белковой и пептидной структуры гормоны гипофиза, гормоны поджелудочной железы, гормоны гипоталамуса. гормоны щитовидной железы, гормоны паращитовидных желёз.

Химическая природа гормонов передней доли гипофиза СТГ – белок, ТТГ – гликопротеин, АКТГ – пептид, ГТГ: пролактин – белок, ФСГ – гликопротеин, ЛГ — гликопротеин. β-липотропин – пептид.

Соматотропный гормон анаболик: стимулирует синтез ДНК, РНК, белка, усиливает проницаемость клеточных мембран для АМК, усиливает включение АМК в белки протоплазмы, уменьшает активность внутриклеточных протеолитических ферментов, обеспечивает энергией синтетические процессы, усиливает окисление жиров, вызывает гипергликемию, которая связана с активацией, а затем с истощением инсулярного аппарата, стимулирует мобилизацию гликогена, повышает глюконеогенез. под влиянием СТГ период роста костей увеличивается, стимулируются клеточные деления, образование хрящей.

Регуляция синтеза СТГ Регуляция секреции СТГ по типу обратной связи осуществляется в вентромедиальном ядре гипоталамуса. Соматолиберин – стимулирующий регулятор секреции. Соматостатин – тормозящий регулятор, ингибирует мобилизацию кальция. Ростостимулирующее действие СТГ опосредуется ИФР-1 (инсулиноподобный фактор роста 1), который образуется в печени. ИФР-1 регулирует секрецию СТГ, подавляя высвобождение соматолиберина и стимулирует высвобождение соматостатина. Лица с дефицитом ИФР-1 лишены способности к нормальному росту.

Стимулы для секреции СТГ гипогликемия, поступление избытка белка в организм, эстрогены, тироксин. Выделению СТГ способствуют: физические нагрузки, сон (в первые 2 часа после засыпания).

Подавляют секрецию СТГ избыток углеводов и жиров в пище, кортизол. При недостатке СТГ возникает гипофизарный нанизм (карликовость).

Акромегалия возникает, если избыток СТГ наблюдается после периода полового созревания (после зарастания эпифизарных хрящей).

Тиреотропный гормон гликопротеин, молекулярная масса около 30 000, синтез и секреция ТТГ контролируются тиролиберином, связывается с рецепторами плазматических мембран и активирует аденилатциклазу, ТТГ стимулирует все стадии биосинтеза и секрецию трииодтиронина (Т 3) и тироксина (Т 4), повышает синтез белков, фосфолипидов и нуклеиновых кислот в клетках щитовидной железы.

Адренокортикотропный гормон (АКТГ) пептид, синтез и секреция АКТГ контролируются кортиколиберином, регулирует эндокринные функции надпочечников, АКТГ стимулирует синтез и секрецию кортизола.

АКТГ стимулирует: 1. захват ЛПНП, 2. гидролиз запасенных эфиров холестерина в коре надпочечников и увеличение количества свободного холестерина, 3. транспорт холестерина в митохондрии, 4. связывание холестерина с ферментами, превращающими его в прегненолон.

Лютеинизирующий гормон (ЛГ) гликопротеин, продукция ЛГ регулируется гонадолиберином, регулирует синтез и секрецию половых гормонов и гаметогенез, связывается со специфическими рецепторами плазматических мембран и стимулирует образование прогестерона клетками желтых тел и тестостерона клетками Лейдига, Роль внутриклеточного сигнала действия ЛГ играет ц. АМФ.

ФСГ гликопротеин, продукция ФСГ регулируется гонадолиберином, регулирует синтез и секрецию половых гормонов и гаметогенез, стимулирует секрецию эстрогенов в яичниках.

Пролактин белок, продукция пролактина регулируется пролактолиберином, участвует в инициации и поддержании лактации, поддерживает активность желтого тела и продукцию прогестерона, действует на рост и дифференцировку тканей.

β-липотропин пептид, действует через ц. АМФ, оказывает жиромобилизующее, кортикотропное, меланоцитостимулирующее действие, обладает гипокальциемической активностью, оказывает инсулиноподобный эффект.

Вазопрессин и окситоцин синтезируются в нейронах гипоталамуса, связываются с белками нейрофизинами и транспортируются в нейросекреторные гранулы гипоталамуса, затем вдоль аксона в заднюю долю гипофиза, где происходит пострибосомальная достройка. Гормоны задней доли гипофиза

Вазопрессин стимулятор аденилатциклазы: ц. АМФ образуется в мембране эпителия почечных канальцев, в результате повышается проницаемость для воды, повышает артериальное давление из-за стимуляции сокращения гладкой мускулатуры сосудов, способствует уменьшению диуреза из-за воздействия на канальцевый аппарат нефрона, повышения реабсорбции воды.

Несахарный диабет возникает из-за нарушения: синтеза, транспорта, секреции вазопрессина. При заболевании с мочой теряется до 40 л воды в сутки, возникает жажда. Несахарный диабет бывает при атрофии задней доли гипофиза. Синдром Пархана возникает из-за повышенной секреции вазопрессина. усиливается реабсорбция воды в почках, появляются отёки.

Окситоцин стимулирует сокращения гладкой мускулатуры матки, гладких мышц кишечника, уретры, стимулирует сокращение мышц вокруг альвеол молочных желёз, способствуя молокоотдаче. Окситоциназа разрушает гормон. При родах её активность падает в 100 раз.

Гормоны поджелудочной железы Инсулин – первый гормон, для которого расшифрована белковая природа. Его удалось получить синтетическим путём. Инсулиноподобные вещества вырабатываются в печени, почках, эндотелии сосудов головного мозга, слюнных железах, гортани, сосочках языка.

Инсулин – простой белок. Состоит из двух полипептидных цепей: а- и в-. а-цепь содержит 21 аминокислотный остаток, в-цепь – 30. Инсулин синтезируется в виде неактивного предшественника проинсулина, который путём ограниченного протеолиза превращается в инсулин. При этом от проинсулина отщепляется С-пептид из 33 аминокислотных остатков.

Основной эффект инсулина – повышение проницаемости клеточных мембран для глюкозы. Инсулин активирует: гексокиназную реакцию, синтез глюкокиназы, гликолиз, все фазы аэробного распада, пентозный цикл, синтез гликогена, синтез жира из глюкозы. Инсулин ингибирует: распад гликогена, глюконеогенез. Инсулин является анаболиком. способствует синтезу гликогена, жира, белка. оказывает белоксберегающий эффект, так как тормозит глюконеогенез из аминокислот.

Органы – мишени инсулина и характер метаболического влияния Антикатаболический эффект Анаболический эффект печень торможение гликогенолиза и глюконеогенеза активация синтеза гликогена и жирных кислот жировая ткань торможение липолиза активация синтеза глицерина и жирных кислот мышцы торможение распада белков активация синтеза белка и гликогена. Орган -мишень

Глюкагон вырабатывается а-клетками островков Лангерганса, состоит из 29 АМК, молекулярная масса 3500. Органы-мишени: печень, жировая ткань. Действует глюкагон через ц. АМФ. Рецепторами являются липопротеины мембран.

Биологическая роль глюкагона стимулирует фосфоролиз гликогена печени, стимулирует глюконеогенез, усиливает липолиз в жировой ткани и печени, увеличивает клубочковую фильтрацию, ускоряет ток крови, способствует экскреции соли, мочевой кислоты, стимулирует протеолиз, увеличивает кетогенез, стимулирует транспорт АМК в печени, снижает концентрацию калия в печени.

Соматостатин пептид, подавляет секрецию СТГ, ингибирует секрецию инсулина и глюкагона, выделен из гипоталамуса, секретируется в поджелудочной железе, желудке.

Катехоламины (адреналин, норадреналин, дофамин) гормоны мозгового слоя надпочечников, производные тирозина. Органы-мишени: печень, мышцы. Секреция гормонов возбуждается симпатическими нервами.

Механизм действия через ц. АМФ, в клетку не проникают, через изменение концентрации ионов кальция. Оба гормона вызывают гипертонию.

Различия адреналина и норадреналина Адреналин Норадреналин Свободная СН 3 группа Свободная NH 2 группа Возбуждает в-рецепторы Возбуждает а-рецепторы Расширяет бронхи Сужает бронхи Расширяет сосуды мозга, мышц Сужает сосуды мозга, мышц Стимуляция коры, возбуждает ЦНС Действует слабее Тахикардия Брадикардия Расслабляет гладкие мышцы, расширяет зрачок Действует слабее

Биохимическое действие адреналина усиливает распад гликогена в печени, вызывая гипергликемию, усиливает распад гликогена в мышцах, при этом увеличивается концентрация молочной кислоты, стимулирует фосфорилазу, ингибирует гликогенсинтазу, угнетает секрецию инсулина (сбережение глюкозы для ЦНС)

Норадреналин в 4 -8 раз слабее адреналина действует на а-адренергические рецепторы через изменение концентрации кальция (влияет на сокращения гладких мышц),

Катехоламины не проникают через гемато-энцефалический барьер (ГЭБ). Их присутствие в мозге объясняется местным синтезом. При некоторых заболеваниях ЦНС (болезни Паркинсона) наблюдается нарушение синтеза дофамина в мозге. ДОФА легко проходит через ГЭБ и служит эффективным средством для лечения болезни Паркинсона. α-метил-ДОФА конкурентно ингибирует ДОФА-карбоксилазу и используется для лечения гипертонии.

115. Основные системы межклеточной коммуникации: эндокринная, паракринная, аутокринная регуляция.

По расстоянию от клетки-продуцента гормона до клетки-мишени различают эндокринный, паракринный и аутокринный варианты регуляции.
Эндокринная , или дистантная, регуляция. Секреция гормона происходит в жидкие среды организма. Клетки-мишени могут отстоять от эндокринной клетки сколь угодно далеко. Пример: секреторные клетки эндокринных желёз, гормоны из которых поступают в систему общего кровотока.
Паракринная регуляция . Продуцент биологически активного вещества и клетка-мишень расположены рядом. Молекулы гормона достигают мишени путём диффузии в межклеточном веществе. Например, в париетальных клетках желёз желудка секрецию Н + стимулируют гастрин и гистамин, а подавляют соматостатин и Пг, секретируемые рядом расположенными клетками.
Аутокринная регуляция . При аутокринной регуляции клетка-продуцент гормона имеет рецепторы к этому же гормону (другими словами, клетка-продуцент гормона в то же время является его мишенью). Примеры: эндотелины, вырабатываемые клетками эндотелия и воздействующие на эти же эндотелиальные клетки; Т-лимфоциты, секретирующие интерлейкины, имеющие мишенями разные клетки, в том числе и Т-лимфоциты.

116. Роль гормонов в системе регуляции метаболизма. Клетки-мишени и клеточные рецепторы гормонов

Роль гормонов в регуляции обмена веществ и функций . Интегрирующими регуляторами, связывающими различные регуляторные механизмы и метаболизм в разных органах, являются гормоны. Они функционируют как химические посредники, переносящие сигналы, возникающие в различных органах и ЦНС. Ответная реакция клетки на действие гормона очень разнообразна и определяется как химическим строением гормона, так и типом клетки, на которую направлено действие гормона. В крови гормоны присутствуют в очень низкой концентрации. Для того чтобы передавать сигналы в клетки, гормоны должны распознаваться и связываться особыми белками клетки - рецепторами, обладающими высокой специфичностью. Физиологический эффект гормона определяется разными факторами, например концентрацией гормона (которая определяется скоростью инактивации в результате распада гормонов, протекающего в основном в печени, и скоростью выведения гормонов и его метаболитов из организма), его сродством к белкам-переносчикам (стероидные и тиреоидные гормоны транспортируются по кровеносному руслу В комплексе с белками), количеством и типом рецепторов на поверхности клеток-мишеней. Синтез и секреция гормонов стимулируются внешними и внутренними сигналами, поступающими в ЦНС.Эти сигналы по нейронам поступают в гипоталамус, где стимулируют синтез пептидных рилизинг-гормонов (от англ,release - освобождать) - либеринов и статинов, которые, соответственно, стимулируют или ингибируют синтез и секрецию гормонов передней доли гипофиза. Гормоны передней доли гипофиза, называемые тройными гормонами, стимулируют образование и секрецию гормонов периферических эндокринных желёз, которые поступают в общий кровоток и взаимодействуют с клетками-мишенями. Поддержание уровня гормонов в организме обеспечивает механизм отрицательной обратной связи. Изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов, действуя либо на эндокринные железы, либо на гипоталамус. Синтез и секреция тропных гормонов подавляется гормонами эндокринных периферических желёз. Такие петли обратной связи действуют в системах регуляции гормонов надпочечников, щитовидной железы, половых желёз. Не все эндокринные железы регулируются подобным образом. Гормоны задней доли гипофиза (вазопрессин и окситоцин) синтезируются в гипоталамусе в виде предшественников и хранятся в гранулах терминальных аксонов нейрогипофиза. Секреция гормонов поджелудочной железы (инсулина и глюкагона) напрямую зависит от концентрации глюкозы в крови. В регуляции межклеточных взаимодействий участвуют также низкомолекулярные белковые соединения - цитокины. Влияние цитокинов на различные функции клеток обусловлено их взаимодействием с мембранными рецепторами. Через образование внутриклеточных посредников сигналы передаются в ядро, где происходят активация определённых генов и индукция синтеза белков. Все цитокины объединяются следующими общими свойствами:

  • синтезируются в процессе иммунного ответа организма, служат медиаторами иммунной и воспалительной реакций и обладают в основном аутокринной, в некоторых случаях паракринной и эндокринной активностью;
  • действуют как факторы роста и факторы дифференцировки клеток (при этом вызывают преимущественно медленные клеточные реакции, требующие синтеза новых белков);
  • обладают плейотропной (полифункциональной) активностью.

Биологическое действие гормонов проявляется через их взаимодействие с рецепторами клеток-мишеней. Для проявления биологической активности связывание гормона с рецептором должно приводить к образованию химического сигнала внутри клетки, который вызывает специфический биологический ответ, например изменение скорости синтеза ферментов и других белков или изменение их активности. Мишенью для гормона могут служить клетки одной или нескольких тканей. Воздействуя на клетку-мишень, гормон вызывает специфическую ответную реакцию. Например, щитовидная железа - специфическая мишень для тиреотропина, под действием которого увеличивается количество ацинарных клеток щитовидной железы, повышается скорость биосинтеза тиреоидных гормонов. Глюкагон, воздействуя на адипоциты, активирует липолиз, в печени стимулирует мобилизацию гликогена и глюконеогенез. Характерный признак клетки-мишени - способность воспринимать информацию, закодированную в химической структуре гормона.

Рецепторы гормонов . Начальный этап в действии гормона на клетку-мишень - взаимодействие гормона с рецептором клетки. Концентрация гормонов во внеклеточной жидкости очень низка и обычно колеблется в пределах 10 -6 -10 -11 ммоль/л. Клетки-мишени отличают соответствующий гормон от множества других молекул и гормонов благодаря наличию на клетке-мишени соответствующего рецептора со специфическим центром связывания с гормоном.

Общая характеристика рецепторов

Рецепторы пептидных гормонов и адреналина располагаются на поверхности клеточной мембраны. Рецепторы стероидных и тиреоидных гормонов находятся внутри клетки. Причём внутриклеточные рецепторы для одних гормонов, например глюкокортикоидов, локализованы в цитозоле, для других, таких как андрогены, эстрогены, тиреоидные гормоны, расположены в ядре клетки. Рецепторы по своей химической природе являются белками и, как правило, состоят из нескольких доменов. В структуре мембранных рецепторов можно выделить 3 функционально разных участка. Первый домен (домен узнавания) расположен в N-концевой части полипептидной цепи на внешней стороне клеточной мембраны; он содержит гликозилированные участки и обеспечивает узнавание и связывание гормона. Второй домен - трансмембранный. У рецепторов одного типа, сопряжённых с G-белками, он состоит из 7 плотно упакованных α-спиральных полипептидных последовательностей. У рецепторов другого типа трансмембранный домен включает только одну α-спирадизованную полипептидную цепь (например, обе β-субъединицы гетеротетрамерного рецептора инсулина α 2 β 2). Третий (цитоплазматический) домен создаёт химический сигнал в клетке, который сопрягает узнавание и связывание гормона с определённым внутриклеточным ответом. Цитоплазматический участок рецептора таких гормонов, как инсулин, фактор роста эпидермиса и инсулиноподобный фактор роста-1 на внутренней стороне мембраны обладает тирозинки-назной активностью, а цитоплазматические участки рецепторов гормона роста, пролактина и цитокинов сами не проявляют тирозинкиназ-ную активность, а ассоциируются с другими цитоплазматическими протеинкиназами, которые их фосфорилируют и активируют.

Рецепторы стероидных и тиреоидных гормонов содержат 3 функциональные области. На С-концевом участке полипептидной цепи рецептора находится домен узнавания и связывания гормона. Центральная часть рецептора включает домен связывания ДНК. На N-концевом участке полипептидной цепи располагается домен, называемый вариабельной областью рецептора, отвечающий за связывание с другими белками, вместе с которыми участвует в регуляции транскрипции.

117. Механизмы передачи гормональных сигналов в клетки.

По механизму действия гормоны можно разделить на 2 группы. К первой группе относят гормоны, взаимодействующие с мембранными рецепторами (пептидные гормоны, адреналин, а также гормоны местного действия - цитокины, эйкозаноиды). Вторая группа включает гормоны, взаимодействующие с внутриклеточными рецепторами.Связывание гормона (первичного посредника) с рецептором приводит к изменению кон-формации рецептора. Это изменение улавливается другими макромолекулами, т.е. связывание гормона с рецептором приводит к сопряжению одних молекул с другими (трансдукция сигнала). Таким образом, генерируется сигнал, который регулирует клеточный ответ путём изменения активности или количества ферментов и других белков. В зависимости от способа передачи гормонального сигнала в клетках меняется скорость реакций метаболизма:

  • в результате изменения активности ферментов;
  • в результате изменения количества ферментов

118. Классификация гормонов по химическому строению и биологическим функциям

Классификация гормонов по химическому строению

Пептидные гормоны Стероиды Производные аминокислот
Адренокортикотропный гормон (кортикотропин, АКТГ) Альдостерон Адреналин
Гормон роста (соматотропин, ГР, СТГ) Кортизол Норадреналин
Тиреотропный гормон (тиреотропин, ТТГ) Кальцитриол Трийодтиронин (Т 3)
Лактогенный гормон (пролактин, ЛТГ) Тестостерон Тироксин (Т 4)
Лютеинизирующий гормон (лютропин, ЛГ) Эстрадиол
Фолликулостимулирующий гормон (ФСГ) Прогестерон
Меланоцитстимулирующий гормон (МСГ)
Хорионический гонадотропин (ХГ)
Антидиуретический гормон (вазопрессин, АДГ)
Окситоцин
Паратиреоидный гормон (паратгормон, ПТГ)
Кальцитонин
Инсулин
Глюкагон

Классификация гормонов по биологическим функциям*

Регулируемые процессы Гормоны
Обмен углеводов, липйдов, аминокислот Инсулин, глюкагон, адреналин, кортизол, тироксин, соматотропин
Водно-солевой обмен Альдостерон, антидиуретический гормон
Обмен кальция и фосфатов Паратгормон, кальцитонин, кальцитриол
Репродуктивная функция Эстрадиол, тестостерон, прогестерон, гонадотропные гормоны
Синтез и секреция гормонов эндокринных желёз Тропные гормоны гипофиза, либерины и статины гипоталамуса
Изменение метаболизма в клетках, синтезирующих гормон Эйкозаноиды, гистамин, секретин, гастрин, соматостатин, вазоактивный интестинальный пептид (ВИП), цитокины

(*) Эта классификация условна, поскольку одни и те же гормоны могут выполнять разные функции

119. Строение, синтез и метаболизм иодтиронинов. Влияние на обмен ве­ществ. Изменение метаболизма при гипо- и гипертиреозе. Причины и проявление эндемического зоба.

Биосинтез йодтиронинов . Йодтиронины синтезируются в составе белка тиреоглобулина (Тг) в фолликулах, которые представляют собой морфологическую и функциональную единицу щитовидной железы.

Тиреоглобулин - гликопротеин с молекулярной массой 660 кД, содержащий 115 остатков тирозина. 8-10% массы тиреоглобулина представлено углеводами. Содержание йодида в организме составляет 0,2-1%

.

Тиреоглобулин синтезируется на рибосомах шероховатого ЭР в виде претиреоглобулина, затем переносится в цистерны ЭР, где происходит формирование вторичной и третичной структуры, включая процессы гликозилирования. Из цистерн ЭР Тиреоглобулин поступает в аппарат Гольджи, включается в состав секреторных гранул и секретируется во внеклеточный коллоид, где происходит йодирование остатков тирозина и образование йодтиронинов. Йодирование тиреоглобулина и образование йодтиронинов осуществляется в несколько этапов

Транспорт йода в клетки щитовидной железы . Йод в виде органических и неорганических соединений поступает в ЖКТ с пищей и питьевой водой. Суточная потребность в йоде составляет 150-200 мкг. 25-30% этого количества йодидов захватывается щитовидной железой. Транспорт йодида в клетки щитовидной железы - энергозависимый процесс и происходит при участии специального транспортного белка против электрохимического градиента (соотношение концентраций I - в железе к концентрации I - в сыворотке крови в норме составляет 25:1). Работа этого йодид-переносящего белка сопряжена с Nа + ,К + -АТФ-азой.

Окисление йода. Окисление I - в I + происходит при участии гемсодержащей тиреоперокси-дазы и Н 2 О 2 в качестве окислителя. Йодирование тирозина . Окисленный йод взаимодействует с остатками тирозина в молекуле тиреоглобулина. Эта реакция также катализируется тиреопероксидазой.

Образование йодтиронинов. Под действием тиреопероксидазы окисленный йод реагирует с остатками тирозина с образованием монойод-тирозинов (МИТ) и дийодтирозинов (ДИТ). Две молекулы ДИТ конденсируются с образованием йодтиронина Т 4 , а МИТ и ДИТ - с образованием йодтиронина Т 3 . Йодтиреоглобулин транспортируется из коллоида в фолликулярную клетку путём эндоцитоза и гидролизуется ферментами лизосом с освобождением Т 3 и Т 4 . В нормальных условиях щитовидная железа сек-ретирует 80-100 мкг Т 4 и 5 мкг Т 3 в сутки. Ещё 22-25 мкг Т 3 образуется в результате дейодирования Т 4 в периферических тканях по 5"-углеродному атому.

Транспорт и метаболизм йодтиронинов . От половины до двух третей Т 3 и Т 4 находятся в организме вне щитовидной железы. Большая часть их циркулирует в крови в связанной форме в комплексе с белками: тироксинсвязывающим глобулином (ТСГ) и тироксинсвязывающим преальбумином (ТСПА). ТСГ служит основным транспортным белком йодтиронинов, а также формой их депонирования. Он обладает более высоким сродством к Т 3 и Т 4 и в нормальных условиях связывает почти всё количество этих гормонов. Только 0,03% Т 4 и 0,3% Т 3 находятся в крови в свободной форме. Т 1/2 Т 4 в плазме в 4-5 раз больше, чем Т 3 . Для Т 4 этот период составляет около 7 дней, а для Т 3 - 1-1,5 дня. Биологическая активность йодтиронинов обусловлена несвязанной фракцией. Т 3 - основная биологически активная форма йодтиронинов; его сродство к рецептору клеток-мишеней в 10 раз выше, чем у Т 4 . В периферических тканях в результате дейодирования части Т 4 по пятому углеродному атому образуется так называемая "реверсивная" форма Т 3 , которая почти полностью лишена биологической активности. Другие пути метаболизма йодтиронинов включают полное дейодирование, дезаминирование или декарбоксилирование. Йодированные продукты катаболизма йодтиронинов конъюгируют-ся в печени с глюкуроновой или серной кислотами, секретируются с жёлчью, в кишечнике вновь всасываются, дейодируются в почках и выделяются с мочой.

Механизм действия и биологические функции йодтиронинов. Клетки-мишени йодтиронинов имеют 2 типа рецепторов к этим гормонам. Основные эффекты йодтиронинов - результат их взаимодействия с высокоспецифичными рецепторами, которые в комплексе с гормонами постоянно находятся в ядре и взаимодействуют с определёнными последовательностями ДНК, участвуя в регуляции экспрессии генов. Другие рецепторы расположены в плазматической мембране клеток, но это не те же самые белки, что в ядре. Они обладают более низким сродством к йодтиронинам и, вероятно, обеспечивают связывание гормонов для удержания их в непосредственной близости к клетке. При физиологической концентрации йодтиронинов их действие проявляется в ускорении белкового синтеза, стимуляции процессов роста и клеточной дифференцировки. В этом отношении йодтиронины - синергисты гормона роста. Кроме того, Т 3 ускоряет транскрипцию гена гормона роста. У животных при дефиците Т 3 клетки гипофиза теряют способность к синтезу гормона роста. Очень высокие концентрации Т 3 тормозят синтез белков и стимулируют катаболические процессы, показателем чего служит отрицательный азотистый баланс. Метаболические эффекты йодтиронинов относят в основном к энергетическому метаболизму, что проявляется в повышении поглощения клетками кислорода. Этот эффект проявляется во всех органах, кроме мозга, РЭС и гонад. В разных клетках Т 3 стимулирует работу Nа + ,К + -АТФ-азы, на что затрачивается значительная часть энергии, утилизируемой клеткой. В печени йодтиронины ускоряют гликолиз, синтез холестерола и синтез жёлчных кислот. В печени и жировой ткани Т 3 повышает чувствительность клеток к действию адреналина и косвенно стимулирует липолиз в жировой ткани и мобилизацию гликогена в печени. В физиологических концентрациях Т 3 увеличивает в мышцах потребление глюкозы, стимулирует синтез белков и увеличение мышечной массы, повышает чувствительность мышечных клеток к действию адреналина. Йодтиронины также участвуют в формировании ответной реакции на охлаждение увеличением теплопродукции, повышая чувствительность симпатической нервной системы к норадреналину и стимулируя секрецию норадреналина.

Заболевания щитовидной железы Гормоны щитовидной железы необходимы для нормального развития человека.

Гипотиреоз у новорождённых приводит к развитию кретинизма, который проявляется множественными врождёнными нарушениями и тяжёлой необратимой задержкой умственного развития. Гипотиреоз развивается вследствие недостаточности йодтиронинов. Обычно гипотиреоз связан с недостаточностью функции щитовидной железы, но может возникать и при заболеваниях гипофиза и гипоталамуса.

Наиболее тяжёлые формы гипотиреоза, сопровождающиеся слизистым отёком кожи и подкожной клетчатки, обозначают термином "микседема " (от греч. туха - слизь, oedema - отёк). Отёчность обусловлена избыточным накоплением гликозаминогликанов и воды. В подкожной клетчатке накапливается глюкуроновая и в меньшей степени хондроитинсерная кислоты. Избыток гликозаминогликанов вызывает изменения коллоидной структуры межклеточного матрикса, усиливает его гидрофильность и связывает ионы натрия, что приводит к задержке воды. Характерные проявления заболевания: снижение частоты сердечных сокращений, вялость, сонливость, непереносимость холода, сухость кожи. Эти симптомы развиваются вследствие снижения основного обмена, скорости гликолиза, мобилизации гликогена и жиров, потребления глюкозы мышцами, уменьшения мышечной массы и снижения теплопродукции. При возникновении гипотиреоза у детей старшего возраста наблюдают отставание в росте без задержки умственного развития. В настоящее время у взрослых людей частой причиной гипотиреоза является хронический аутоиммунный тиреоидит, приводящий к нарушению синтеза йодтиронинов (зоб Хашимото ).

Гипотиреоз может быть также результатом недостаточного поступления йода в организм -эндемический зоб . Эндемический зоб (нетоксический зоб) часто встречается у людей, живущих в районах, где содержание йода в воде и почве недостаточно. Если поступление йода в организм снижается (ниже 100 мкг/сут), то уменьшается продукция йодтиронинов, что приводит к усилению секреции ТТГ (из-за ослабления действия йодтиронинов на гипофиз по механизму отрицательной обратной связи), под влиянием которого происходит компенсаторное увеличение размеров щитовидной железы (гиперплазия), но продукция йодтиронинов при этом не увеличивается.

Гипертиреоз возникает вследствие повышенной продукции йодтиронинов. Диффузный токсический зоб (базедова болезнь, болезнь Грейвса) - наиболее распространённое заболевание щитовидной железы. При этом заболевании отмечают увеличение размеров щитовидной железы (зоб), повышение концентрации йодтиронинов в 2-5 раз и развитие тиреотоксикоза. Характерные признаки тиреотоксикоза: увеличение основного обмена, учащение сердцебиений, мышечная слабость, снижение массы тела (несмотря на повышенный аппетит) , потливость, повышение температуры тела, тремор и экзофтальм (пучеглазие). Эти симптомы отражают одновременную стимуляцию йодтиронинами как анаболических (рост и дифференцировка тканей), так и катаболических (катаболизм углеводов, ли-пидов и белков) процессов. В большей мере усиливаются процессы катаболизма, о чём свидетельствует отрицательный азотистый баланс. Гипертиреоз может возникать в результате различных причин: развитие опухоли, тиреоидит, избыточное поступление йода и йодсодер-жащих препаратов, аутоиммунные реакции. Болезнь Грейвса возникает в результате образования антител к тиреоидным антигенам. Один из них, иммуноглобулин (IgG), имитирует действие тиреотропина, взаимодействуя с рецепторами тиреотропина на мембране клеток щитовидной железы. Это приводит к диффузному разрастанию щитовидной железы и избыточной неконтролируемой продукции Т 3 и Т 4 , поскольку образование IgG не регулируется по механизму обратной связи. Уровень ТТГ при этом заболевании снижен вследствие подавления функции гипофиза высокими концентрациями йодтиронинов.

120. Регуляция энергетического метаболизма, роль инсулина и контринсулярных гормонов в обеспечении гомеостаза .

Основные пищевые вещества (углеводы, жиры, белки) окисляются в организме с освобождением свободной энергии, которая используется в анаболических процессах и при осуществлении физиологических функций. Энергетическая ценность основных пищевых веществ выражается в килокалориях и составляет: для углеводов - 4 ккал/г, для жиров - 9 ккал/г, для белков - 4 ккал/г. Взрослому здоровому человеку в сутки требуется 2000-3000 ккал (8000-12 000 кДж) энергии. При обычном ритме питания промежутки между приёмами пищи составляют 4-5 ч с 8-12-часовым ночным перерывом. Во время пищеварения и абсорбтивного периода (2-4 ч) основные энергоносители, используемые тканями (глюкоза, жирные кислоты, аминокислоты), могут поступать непосредственно из пищеварительного тракта. В постабсорбтивном периоде и при голодании энергетические субстраты образуются в процессе катаболизма депонированных энергоносителей. Изменения в потреблении энергоносителей и энергетических затратах координируются путём чёткой регуляции метаболических процессов в разных органах и системах организма, обеспечивающей энергетический гомеостаз. Основную роль в поддержании энергетического гомеостаза играют гормоны инсулин и глюкагон , а также другие контринсулярные гормоны - адреналин, кортизол, йодтиронины и соматотропин. Инсулин и глюкагон играют главную роль в регуляции метаболизма при смене абсорбтивного и постабсорбтивного периодов и при голодании. Абсорбтивный период характеризуется временным повышением концентрации глюкозы, аминокислот и жиров в плазме крови. Клетки поджелудочной железы отвечают на это повышение усилением секреции инсулина и снижением секреции глюкагона. Увеличение отношения инсулин/глюкагон вызывает ускорение использования метаболитов для запасания энергоносителей: происходит синтез гликогена, жиров и белков. Режим запасания включается после приёма пищи и сменяется режимом мобилизации запасов после завершения пищеварения. Тип метаболитов, которые потребляются, депонируются и экспортируются, зависит от типа ткани. Главные органы, связанные с изменениями потока метаболитов при смене режимов мобилизации и запасания энергоносителей, - печень, жировая ткань и мышцы.

Изменения метаболизма в печени в абсорбтивном периоде

После приёма пищи печень становится главным потребителем глюкозы, поступающей из пищеварительного тракта. Почти 60 из каждых 100 г глюкозы, транспортируемой портальной системой, задерживается в печени. Увеличение потребления печенью глюкозы - не результат ускорения её транспорта в клетки (транспорт глюкозы в клетки печени не стимулируется инсулином), а следствие ускорения метаболических путей, в которых глюкоза превращается в депонируемые формы энергоносителей: гликоген и жиры. При повышении концентрации глюкозы в гепатоцитах происходит активация глюкокиназы, превращающей глюкозу в глюкозо-6-фосфат. Глюкокиназа имеет высокое значение К m для глюкозы, что обеспечивает высокую скорость фосфорилирования при высоких концентрациях глюкозы. Кроме того, глюкокиназа не ингибируется глюкозо-6-фосфатом (см. раздел 7). Инсулин индуцирует синтез мРНК глюкокиназы. Повышение концентрации глюкозо-6-фосфата в гепатоцитах обусловливает ускорение синтеза гликогена. Этому способствуют одновременная инактивация гликогенфосфорилазы и активация гликогенсинтазы. Под влиянием инсулина в гепатоцитах ускоряется гликолиз в результате повышения активности и количества ключевых ферментов: глюкокиназы, фосфофруктокиназы и пируваткиназы. В то же время происходит торможение глюконеогенеза в результате инактивации фруктозо-1,6-бисфосфатазы и снижения количества фосфоенолпируваткарбоксикиназы - ключевых ферментов глюконеогенеза. Повышение концентрации глюкозо-6-фосфата в гепатоцитах в абсорбтивном периоде, сочетается с активным использованием NADPH для синтеза жирных кислот, что способствует стимуляции пентозофосфатного пути. Ускорение синтеза жирных кислот обеспечивается доступностью субстратов (ацетил-КоА и NADPH), образующихся при метаболизме глюкозы, а также активацией и индукцией ключевых ферментов синтеза жирных кислот. В абсорбтивном периоде в печени ускоряется синтез белков. Однако количество аминокислот, поступающих в печень из пищеварительного тракта, превышает возможности их использования для синтеза белков и других азотсодержащих соединений. Излишек аминокислот либо поступает в кровь и транспортируется в другие ткани, либо дезаминируется с последующим включением безазотистых остатков в общий путь катаболизма.

Изменения метаболизма в адипоцитах . Основная функция жировой ткани - запасание энергоносителей в форме триацилгли-церолов. Под влиянием инсулина ускоряется транспорт глюкозы в адипоциты. Повышение внутриклеточной концентрации глюкозы и активация ключевых ферментов гликолиза обеспечивают образование ацетил-КоА и глицерол-3-фосфата, необходимых для синтеза ТАГ. Стимуляция пентозофосфатного пути обеспечивает образование NADPH, необходимого для синтеза жирных кислот. Однако биосинтез жирных кислот de novo в жировой ткани человека протекает с высокой скоростью только после предшествующего голодания. При нормальном ритме питания для синтеза ТАГ используются в основном жирные кислоты, поступающие из ХМ и ЛПОНП под действием ЛП-липазы. Вместе с тем при увеличении отношения инсулин/глюкагон гормончувствительная ТАГ-липаза находится в дефосфорилированной неактивной форме, и процесс липолиза тормозится.

Изменение метаболизма в мышцах в абсорбтивном периоде . В абсорбтивном периоде под влиянием инсулина ускоряется транспорт глюкозы в клетки мышечной ткани. Глюкоза фосфорилируется и окисляется для обеспечения клетки энергией, а также используется для синтеза гликогена. Жирные кислоты, поступающие из ХМ и ЛПОНП, в этот период играют незначительную роль в энергетическом обмене мышц. Поток аминокислот в мышцы и биосинтез белков также увеличиваются под влиянием инсулина, особенно после приёма белковой пищи.

Эндокринная система регулирует множество функций разных клеток и органов. Эта регуляторная функция осуществляется при помощи сигнальных молекул - гормонов, вырабатываемых эндокринными клетками, циркулирующих во внутренней среде организма и связывающихся со специфическими рецепторами гормонов на соответствующих клетках-мишенях.

Химия гормонов. По химическому строению различают следующие типы гормонов: олигопептид (например, нейропептиды); полипептид (например, инсулин); гликопротеин (например, тиреотропин); стероид (например, альдостерон и кортизол); производное тирозина (например, йодсодержащие гормоны щитовидной железы: трийодтиронин - Т 3 и тироксин - T 4); эйкозаноиды (метаболиты арахидоновой кислоты).

Цитология эндокринных клеток. Эндокринные клетки имеют строение, определяемое химической природой синтезируемого гормона.

Пептиды, белки, гликопротеины, катехоловые амины. Для этих эндокринных клеток характерно наличие гранулярной эндоплазматической сети (здесь происходит сборка пептидной цепи), комплекса Гольджи (присоединение углеводных остатков, формирование секреторных гранул), секреторных гранул.

Стероидные гормоны. Для клеток, синтезирующих стероидные гормоны, характерно присутствие развитой гладкой эндоплазматической сети и многочисленных митохондрий.

Тропный гормон - гормон, клетками-мишенями которого являются другие эндокринные клетки (например, часть эндокринных клеток передней доли гипофиза синтезирует и секретирует в кровь АКТГ (адренокортикотропный гормон). Мишени АКТГ - эндокринные клетки пучковой зоны коры надпочечников, синтезирующие глюкокортикоиды.

Рилизинг-гормоны (рилизинг-факторы) [от англ. releasing hormone (releasing factor)] - группа синтезируемых в нейронах гипоталамической области мозга гормонов, мишенями которых являются эндокринные клетки передней доли гипофиза (например, рилизинг-гормон для синтезирующих АКТГ клеток передней доли гипофиза - кортиколиберин). Рилизинг-гормоны подразделяют на либерины и статины.

Рис. 9-5. Варианты воздействия гормонов-лигандов на клетки-мишени.

Либерин - рилизинг-гормон, способствующий усилению синтеза и секреции соответствующего гормона в эндокринных клетках передней доли гипофиза.

Статин - рилизинг-гормон, в отличие от либеринов ингибирующий синтез и секрецию гормонов в клетках-мишенях.

Варианты эндокринной регуляции. В зависимости от расстояния от продуцента гормона до клетки-мишени различают эндокринный, паракринный и аутокринный варианты регуляции (рис. 9-5).

Эндокринная, или дистантная регуляция. Секреция гормона происходит во внутреннюю среду, клетки-мишени могут отстоять от эндокринной клетки сколь угодно далеко. Наиболее яркий пример: секреторные клетки эндокринных желёз, гормоны из которых поступают в систему общего кровотока.

Паракринная регуляция. Продуцент биологически активного вещества и клеткамишень расположены рядом, молекулы гормона достигают мишени путём диффузии в межклеточном веществе. Например, в париетальных клетках желёз желудка секрецию H + стимулируют гастрин и гистамин, а подавляют соматостатин и простагландины, секретируемые рядом расположенными клетками.

Аутокринная регуляция. При аутокринной регуляции сама клетка-продуцент гормона имеет рецепторы к этому же гормону (другими словами, клетка-продуцент гормона в то же время является собственной мишенью). В качестве примера приведём эндотелины, вырабатываемые клетками эндотелия и воздействующие на эти же эндотелиальные клетки.

Классификация. Органы эндокринной системы подразделяют на несколько групп:

гипоталамо-гипофизарная система: нейросекреторные нейроны и аденогипофиз;

мозговые придатки: гипофиз и эпифиз;

бранхиогенная группа (имеющая происхождение из эпителия глоточных карманов): щитовидная железа, паращитовидные железы, вилочковая железа;

надпочечниково-адреналовая система: кора надпочечников, мозговое вещество надпочечников и параганглии;

островки поджелудочной железы;

диффузная эндокринная система: эндокринные клетки, рассеянные в различных органах.

ГИПОТАЛАМО-ГИПОФИЗАРНАЯ СИСТЕМА

Эпителиального генеза передняя доля гипофиза (синтез тропных гормонов, экспрессия гена проопиомеланокортина), перикарионы нейросекреторных нейронов гипоталамуса (синтез рилизинг-гормонов, вазопрессина, окситоцина, орексинов), гипоталамо-гипофизарный тракт (транспорт гормонов по аксонам нейросекреторных нейронов), аксо-вазальные синапсы (секреция вазопрессина и окситоцина в капилляры задней доли гипофиза, секреция рилизинг-гормонов в капилляры срединного возвышения), портальная система кровотока между срединным возвышением и передней долей гипофиза в совокупности формируют гипоталамо-гипофизарную систему (рис. 9-6, рис. 9-12).

Гипофиз

Гипофиз анатомически состоит из ножки и тела, а гистологически подразделяется на адено- и нейрогипофиз.

Развитие гипофиза. Гипофиз образуется из двух зачатков эктодермального (карман Ратке) и нейрогенного (processus infundibularis).

Карман Ратке. На 4-5-й неделе эктодермальный эпителий крыши ротовой бухты образует карман Ратке - вырост, направляющийся к мозгу. Из этого гипофизарного кармана развивается аденогипофиз (передняя, промежуточная и входящая в состав ножки гипофиза туберальная доли).

Processus infundibularis. Навстречу карману Ратке растёт выпячивание промежуточного мозга, дающее начало нейрогипофизу (задняя доля гипофиза, нейрогипофизарная часть ножки гипофиза и отчасти срединное возвышение).

Кровоснабжение гипофиза. Портальная система кровотока состоит из первичной капиллярной сети срединного возвышения, воротных вен туберальной части аденогипофиза и вторичной капиллярной сети передней доли (рис. 9-9). Приносящие гипофизарные артерии в медиобазальном гипоталамусе (срединное возвышение) образуют первичную капиллярную сеть. Терминали аксонов нейросекреторных клеток

Рис. 9-6. Анатомия гипофиза.

гипоталамуса заканчиваются на этих капиллярах. Кровь из первичной капиллярной сети собирается в портальные вены, идущие по гипофизарной ножке (туберальная часть) в переднюю долю. Здесь портальные вены переходят в капилляры вторичной сети. Обогащённая гормонами передней доли кровь из вторичной капиллярной сети поступает в общую циркуляцию через выносящие вены.

Аденогипофиз (см. рис. 9-6) состоит из передней и промежуточной долей и туберальной части ножки гипофиза. Аденогипофиз покрыт фиброзной капсулой. Передняя доля представлена тяжами эндокринных клеток (аденоцитов), окружённых сетью ретикулиновых волокон. В передней доле ретикулиновые волокна окружают капилляры с фенестрированным эндотелием и широким просветом (синусоиды) вторичной капиллярной сети. Туберальная часть состоит из тяжей эпителиальных клеток, между ними расположены гипофизарные воротные вены (vv. portae hypophysis, см. рис. 9-9), соединяющие первичную капиллярную сеть (срединное возвышение) и вторичную капиллярную сеть (передняя доля гипофиза). Эндокринная функция эпителиальных клеток туберальной части отсутствует, в ней изредка встречаются базофильные аденоциты. Средняя (промежуточная) доля гипофиза у человека выражена слабо.

Аденогипофиз

Рис. 9-9. Система кровоснабжения гипофиза. ПЕРЕДНЯЯ ДОЛЯ

Передняя доля - эпителиальная эндокринная железа, её клетки синтезируют и секретируют тропные гормоны и продукты экспрессии гена проопиомеланокортина. Разные эндокринные клетки передней доли синтезируют различные пептидные гормоны. Эндокринные клетки передней доли содержат элементы гранулярной эндоплазматической сети, комплекс Гольджи, многочисленные митохондрии и секреторные гранулы различного диаметра. Клетки расположены анастомозирующими тяжами и островками между кровеносными капиллярами с фенестрированным эндотелием. В последние выводятся гормоны, а из капилляров к клеткам поступают либерины и статины.

Классификация эндокринных клеток передней доли (аденоцитов) основана на связывании стандартных красителей, по этому признаку различают хромофильные (базофильные и оксифильные) и хромофобные (плохо окрашивающиеся) клетки. Хромофобные клетки - гетерогенная популяция, включающая дегранулировавшие клетки (оксифилы и базофилы разных типов) и камбиальный резерв. Регенерация аденоцитов происходит из клеток камбиального резерва.

Базофильные аденоциты подразделяют на кортикотрофы, тиротрофы и гонадотрофы.

Кортикотрофы экспрессируют ген проопиомеланокортина и содержат гранулы диаметром около 200 нм.

Тиротрофы синтезируют тиреотрофный гормон (ТТГ) и содержат мелкие (около 150 нм) гранулы.

Гонадотрофы синтезируют фолликулостимулирующий гормон (фоллитропин) и лютропин, размеры гранул варьируют от 200 до 400 нм. Фоллитропин и лютропин синтезируются в разных подтипах гонадотрофов.

Ацидофильные аденоциты синтезируют, накапливают в гранулах и секретируют соматотрофин (гормон роста) и пролактин.

Соматотрофы имеют гранулы диаметром до 400 нм.

Лактотрофы содержат мелкие (около 200 нм) гранулы. При беременности и лактации величина гранул может достигать 600 нм.

В передней доле синтезируются СТГ (соматотрофный гормон, соматотро[ф][п]ин, гормон роста), ТТГ (тиреотропный гормон, тиротрофин), АКТГ (адренокортикотропный гормон), гонадотропины (гонадотропные гормоны), а именно лютеинизирующий гормон (лютропин) и фолликулостимулирующий гормон (фоллитропин), а также пролактин. Экспрессия гена проопиомеланокортина приводит к синтезу и секреции ряда пептидов (АКТГ, β- и γ-липотропины, α-, β- и γ-меланотропины, β-эндорфин), из которых гормональная функция установлена для АКТГ и меланотропинов; функции остальных пептидов изучены недостаточно.

Гормоны роста

К этой группе относят гипофизарный гормон роста и хорионический соматомаммотрофин.

Гормон роста гипофизарный (СТГ, соматотрофин, соматотрофный гормон) нормально экспрессируется только в ацидофильных клетках (соматотрофах) передней доли гипофиза.

Хорионическийсоматомаммотрофин синтезируетсяв клеткахсинцитиотрофобласта. Этот гормон известен также как плацентарный лактоген.

Нативный гормон роста - полипептидная цепь, состоящая из 191 аминокислотных остатков. Синтез и секрецию СТГ стимулирует соматолиберин, а подавляет соматостатин. Эффекты гормона роста

опосредуют соматомедины (инсулиноподобные факторы роста, IGF), синтезируемые преимущественно в гепатоцитах. СТГ - анаболический гормон, стимулирующий рост всех тканей. Наиболее очевидны эффекты СТГ на рост длинных трубчатых костей.

Меланокортины и АКТГ

Адренокортикотропный гормон, α-, β- и γ-меланоцитостимулирующие гормоны (меланотропины), липотропины и β-эндорфин образуются из молекулы-предшественника - проопиомеланокортина (POMC). Продукты гена POMC все вместе называют меланокортинами. Адренокортикотропный гормон. АКТГ состоит из 39 аминокислот. Синтез АКТГ осуществляют кортикотрофы преимущественно передней и в меньшей степени промежуточной доли гипофиза, а также некоторые нейроны ЦНС. Гипоталамический кортиколиберин стимулирует синтез и секрецию АКТГ, а АКТГ стимулирует синтез и секрецию гормонов коры надпочечников (главным образом, глюкокортикоидов).

Гонадотропные гормоны

В эту группу входят гипофизарные фоллитропин и лютропин, а также хорионический гонадотропин (ХГТ) плаценты. Гонадотропные гормоны, а также тиротропин (ТТГ) - гликопротеины, состоящие из двух субъединиц (СЕ). Структура α-СЕ фоллитропина, лютропина, ХГТ и ТТГ идентична, а структура β-СЕ тех же гормонов различна. Гипоталамический гонадолиберин стимулирует синтез и секрецию фоллитропина и лютропина в базофилах (гонадотрофы) передней доли гипофиза. Фоллитропин (фолликулостимулирующий гормон). α-Ингибин - пептидный гормон, вырабатываемый зернистыми клетками фолликулов яичника и сустентоцитами яичка, - подавляет секрецию фоллитропина. Фоллитропин, как и лютропин, регулирует овариальный цикл у женщин. У мужчин мишени фоллитропина - сустентоциты яичка (регуляция сперматогенеза).

Лютропин (лютеинизирующий гормон). У женщин лютропин, как и фоллитропин, регулирует овариальный цикл и эндокринную функцию яичников. У мужчин лютропин стимулирует синтез тестостерона в интерстициальных эндокриноцитах яичек.

Хорионический гонадотропин (ХГТ) - гликопротеин, синтезируемый клетками трофобласта с 10-12 дней развития. При беременности ХГТ взаимодействует с клетками жёлтого тела (синтезирующего и секретирующего прогестерон) яичников.

Тиреотропный гормон

Тиротропин (тиреотропный гормон, ТТГ) синтезируется в базофильных клетках (тиротрофы) передней доли гипофиза. Соматостатин по-

давляет секрецию ТТГ, а гипоталамический тиролиберин стимулирует синтез и секрецию ТТГ. Гормоны щитовидной железы (Т 3 и Т 4), циркулирующие в крови, регулируют секрецию ТТГ по принципу отрицательной обратной связи. Увеличение содержания свободных T 4 и T 3 подавляет секрецию ТТГ. Уменьшение содержания свободных T 4 и T 3 стимулирует секрецию тиротропина. Рецептор ТТГ экспрессируется в фолликулярных клетках щитовидной железы, а также в ретробульбарных тканях. Тиротропин стимулирует дифференцировку эпителиальных клеток щитовидной железы (кроме т.н. светлых клеток, синтезирующих тирокальцитонин) и их функциональное состояние (включая синтез тироглобулина и секрецию Т 3 и Т 4).

Пролактин

Синтез пролактина происходит в ацидофильных аденоцитах (лактотрофах) передней доли гипофиза. Количество лактотрофов составляет не менее трети всех эндокринных клеток аденогипофиза. При беременности объём передней доли удваивается за счёт увеличения числа лактотрофов и их гипертрофии. Пролактиностатин подавляет секрецию пролактина из лактотрофов. Дофамин ингибирует синтез и секрецию пролактина. Тиролиберин стимулирует секрецию пролактина из лактотрофов. Стимуляция соска и околососкового поля увеличивает секрецию пролактина. Главная функция пролактина - регулирование функции молочной железы.

Нейрогипофиз

Нейрогипофиз (задняя доля гипофиза и нейрогипофизарная часть ножки гипофиза) состоит из клеток нейроглии - питуицитов и кровеносных сосудов. Собственная эндокринная функция питуицитов неизвестна, но нейрогипофиз содержит аксоны гипоталамо-гипофизарного тракта и их окончания на кровеносных капиллярах (аксо-вазальные синапсы). Эти аксоны принадлежат нейронам, расположенным в паравентрикулярном и супраоптическом ядрах гипоталамуса (рис. 9-12). Большие нейроны этих ядер продуцируют вазопрессин и окситоцин, которые по аксонам транспортируются в заднюю долю, где и происходит их высвобождение из нейросекреторных клеток. Следовательно, задняя доля, как и передняя, служит местом выделения пептидных гормонов из гипоталамуса.

Аксо-вазальные синапсы образованы терминальными расширениями аксонов нейросекреторных нейронов гипоталамуса, контактирующими со стенкой кровеносных капилляров срединного возвышения и задней доли гипофиза. Аксоны имеют локальные утолщения (нейросекреторные тельца), заполненные пузырьками и гранулами с гормонами.

Гипоталамус

Нейросекреторные нейроны гипоталамуса - типичные нервные клетки. В перикарионах этих нейронов синтезируются рилизинг-гормоны, орексины, АДГ, окситоцин и другие гормоны. Такие гормон-продуцирующие нервные клетки входят в состав многих ядер гипоталамуса, в т.ч. надзрительного (n. supraopticus) и околожелудочкового (n. paraventricularis).

Гипоталамо-гипофизарный тракт образован аксонами нейросекреторных нейронов гипоталамуса (рис. 9-12). Синтезируемые в нейросекреторных нейронах гормоны при помощи аксонного транспорта достигают аксо-вазальных синапсов нейрогипофиза.

Гипоталамические рилизинг-гормоны

В нейросекреторных нейронах гипоталамуса синтезируются либерины [гонадолиберин (люлиберин), кортиколиберин, соматолиберин, ти- ролиберин] и статины (меланостатин, пролактиностатин, соматостатин).

Соматостатин синтезируется многими нейронами ЦНС, δ-клетками панкреатических островков, эндокринными клетками пищеварительного тракта и ряда других внутренних органов. Соматостатин - мощный регулятор функций эндокринной и нервной систем, ингибирует синтез и секрецию множества гормонов и секретов.

Кортистатин продуцируется ГАМКергическими нейронами коры большого мозга и гиппокампа. Этот пептид связывается с рецепторами соматостатина и обладает общими с соматостатином свойствами.

Соматолиберин стимулирует секрецию гормона роста в передней доле гипофиза.

Гонадолиберин и пролактиностатин. Ген LHRH кодирует структуру гонадолиберина и пролактиностатина. Мишени гонадолиберина - гонадотрофы, а пролактиностатина - лактотрофы передней доли гипофиза. Гонадолиберин - ключевой нейрорегулятор репродуктивной функции, стимулирует синтез и секрецию фоллитропина и лютропина в продуцирующих гонадотрофы клетках, а пролактиностатин подавляет секрецию пролактина из лактотрофных клеток передней доли гипофиза.

Тиролиберин синтезируется многими нейронами ЦНС (в т.ч. нейросекреторными нейронами околожелудочкового ядра). Мишени тиролиберина - тиротрофы и лактотрофы передней доли гипофиза. Тиролиберин стимулирует секрецию пролактина из лактотрофов и секрецию тиротропина из тиротрофов.

Кортиколиберин синтезируется в нейросекреторных нейронах околожелудочкового ядра гипоталамуса, некоторых других нейронах ЦНС, а также в эндометрии, плаценте, матке, яичнике, яичках, желудке, кишечнике, надпочечниках, щитовидной железе и в коже. Кортиколиберин стимулирует синтез АКТГ и других продуктов экспрессии гена проопиомеланокортина (POMC) клетками аденогипофиза. Кортиколиберин, продуцируемый в матке и плаценте, может играть важную роль в нормальном течении беременности.

Меланостатин подавляет образование меланотропинов.

Рис. 9-12. Гипоталамо-гипофизарн ^1 й тракт. Нейроны с перикарионами больших размеров, локализованные в гипоталамусе, секретируют рилизинг-гормоны в просвет капилляров в области срединного возвышения и воронки, где расположены капилляры первичной сети, собирающие кровь в длинные портальные вены. По ним гипоталамические рилизинг-гормоны поступают в ножку гипофиза и далее в капилляры передней доли (вторичная капиллярная сеть). Аксоны малых нейросекреторных клеток спускаются в ножку гипофиза и выделяют рилизинг-гормоны в капиллярное сплетение, расположенное непосредственно в ножке. Короткие портальные вены переносят рилизинг-гормоны во вторичную капиллярную сеть передней доли. Большие нейроны паравентрикулярного и супраоптического ядер гипоталамуса синтезируют вазопрессин и окситоцин. По аксонам этих нейросекреторных клеток данные гормоны поступают в заднюю долю, где выделяются из нервных терминалей и поступают в просвет многочисленных сосудов, образующих здесь сплетение.

Орексины

В латеральном гипоталамусе расположены нейросекреторные нервные клетки, синтезирующие орексины (гипокретины) A и B. Орексины функционируют как регуляторы сна и бодрствования, участвуют в регуляции пищевого поведения.

Гормоны задней доли

Гормоны задней доли - аргинин вазопрессин (антидиуретический гормон, АДГ), окситоцин, а также нейрофизины - синтезируются в нейросекреторных нейронах надзрительного и околожелудочкового ядер гипоталамуса. Содержащие гормоны мембранные пузырьки транспортируются по аксонам этих нейронов в составе гипоталамогипофизарного тракта в заднюю долю гипофиза и через аксо-вазальные синапсы гормоны секретируются в кровь.

Окситоцин - циклический нонапептид. Мишени окситоцина - ГМК миометрия и миоэпителиальные клетки молочной железы. Окситоцин стимулирует сокращение ГМК миометрия в родах, при оргазме, в менструальную фазу. Окситоцин стимулирует продукцию и секрецию пролактина, секретируется при раздражении соска и околососкового поля, стимулирует сокращение миоэпителиальных клеток альвеол лактирующей молочной железы (рефлекс молокоотделения). Окситоцин регулирует поведенческую активность, связанную с беременностью и родами.

Аргинин вазопрессин - нонапетид. Экспрессия АДГ происходит в части нейросекреторных нейронов околожелудочкового и надзрительного ядер гипоталамуса. Секрецию АДГ стимулирует через барорецепторы каротидной области гиповолемия, т.е. уменьшение объёма циркулирующей крови, а ингибируют алкоголь, α-адренергические агонисты, глюкокортикоиды. Аргинин вазопрессин оказывает антидиуретический (регулятор реабсорбции воды в собирательных трубочках почки) и сосудосуживающий (вазоконстриктор) эффекты. Главная функция АДГ - регуляция обмена воды (поддержание постоянного осмотического давления жидких сред организма).

Нейрофизины I и II кодируются генами окситоцина и АДГ соответственно. Нейрофизины относят к связывающим окситоцин и АДГ белкам.

ЭПИФИЗ

Шишковидная железа - небольшой (5-8 мм) конической формы вырост промежуточного мозга, соединённый ножкой со стенкой третьего желудочка. Капсула органа образована соединительной тканью мягкой мозговой оболочки. От капсулы отходят перегородки, содержащие кровеносные сосуды и сплетения симпатических нервных волокон. Эти перегородки частично подразделяют тело железы на дольки. Паренхима органа состоит из пинеалоцитов и интерстициальных (глиальных) клеток. В интерстиции присутствуют отложения солей кальция, известные как «мозговой песок» (corpora arenacea). Иннервация: орган снабжён многочисленными постганглионарными нервными волокнами от верхнего шейного симпатического узла. Функция органа у человека изучена слабо, хотя железа у ряда позвоночных выполняет различные функции [например, у некоторых амфибий и рептилий эпифиз содержит фоторецепторные элементы (т.н. теменной глаз)], иногда бездоказательно переносимые на человека. Эпифиз у человека,

скорее всего, - звено реализации биологических ритмов, в т.ч. околосуточных.

Пинеалоциты содержат крупное ядро, хорошо развитую гладкую эндоплазматическую сеть, элементы гранулярной эндоплазматической сети, свободные рибосомы, комплекс Гольджи, множество секреторных гранул, микротрубочки и микрофиламенты. Многочисленные длинные отростки пинеалоцитов заканчиваются расширениями на капиллярах и среди клеток эпендимы. Пинеалоциты синтезируют гормон мелатонин и серотонин.

Мелатонин (N-ацетил-5-метокситриптамин) секретируется в цереброспинальную жидкость и в кровь преимущественно в ночные часы.

Серотонин (5-гидрокситриптамин) синтезируется преимущественно в дневные часы. Интерстициальные клетки напоминают астроциты, имеют многочисленные ветвящиеся отростки, округлое плотное ядро, элементы гранулярной эндоплазматической сети и структуры цитоскелета: микротрубочки, промежуточные филаменты и множество микрофиламентов. Циркадианный ритм, или околосуточный ритм - один из биологических ритмов (суточная, помесячная, сезонная и годовая ритмика), скоординированный с суточной цикличностью вращения Земли; несколько не соответствует 24 часам. Многие процессы, в т.ч. гипоталамическая нейросекреция, подчиняются околосуточному ритму. Механизмы околосуточного ритма. Изменения освещённости через зрительный тракт оказывают влияние на разряды нейронов надперекрестного ядра (nucleus suprachiasmaticus) ростро-вентральной части гипоталамуса. Надзрительное ядро содержит т.н. эндогенные часы - неизвестной природы генератор биологических ритмов (включая околосуточный), контролирующий продолжительность сна и бодрствования, пищевое поведение, секрецию гормонов и т.д. Сигнал генератора - гуморальный фактор, секретируемый из надзрительного ядра (в т.ч. в цереброспинальную жидкость). Сигналы от надзрительного ядра через нейроны околожелудочкового ядра (n. paraventricularis) активируют преганглионарные симпатические нейроны боковых столбов спинного мозга. Симпатические преганглионары активируют нейроны верхнего шейного узла. Постганглионарные симпатические волокна от верхнего шейного узла секретируют норадреналин, взаимодействующий с α- и β-адренорецепторами плазмолеммы пинеалоцитов. Активация адренорецепторов приводит к увеличению внутриклеточного содержания цАМФ и экспрессии гена CREM, а также к транскрипции арилалкиламин-N-ацетилтрансферазы, фермента синтеза мелатонина.

ЩИТОВИДНАЯ ЖЕЛЕЗА

Щитовидная железа секретирует регуляторы основного обмена - йодсодержащие гормоны - трийодтиронин (Т 3) и тироксин (Т 4), а также кальцитонин, один из эндокринных регуляторов обмена Ca 2+ . Йодсодержащие гормоны вырабатывают эпителиальные клетки стенки фолликулов, кальцитонин - светлые клетки.

Развитие. Эпителий бранхиогенной группы желёз (щитовидная, вилочковая, околощитовидные) развивается из энтодермы глоточных карманов. В конце 3-го месяца развития плода начинается синтез йодсодержащих гормонов, появляющихся в амниотической жидкости. Синтезирующие кальцитонин светлые клетки (С-клетки) щитовидной железы развиваются из нервного гребня.

ПАРЕНХИМА

Паренхима щитовидной железы - совокупность секретирующих тиреоидные гормоны клеток и С-клеток, синтезирующих кальцитонин. И те, и другие входят в состав фолликулов и скоплений межфолликулярных клеток.

Тиреоциты и йодсодержащие гормоны

Фолликулы - различной величины и формы (преимущественно округлые) пузырьки, содержащие коллоид. Стенка фолликула образована эпителиальными фолликулярными клетками (продукция йодсодержащих гормонов), прикреплёнными к базальной мембране. Между базальной мембраной и фолликулярными клетками встречаются более крупные светлые клетки (синтез кальцитонина). Фолликулярные клетки, или тироциты образуют стенку фолликула и формируют его содержимое, синтезируя и секретируя в коллоид тироглобулин. Фермент тиропероксидаза и рецептор N-ацетилглюко- замина также синтезируются в фолликулярных клетках. Основная функция фолликулярных клеток - синтез и секреция T 4 и T 3 - складывается из многих процессов: образование тироглобулина → секреция тироглобулина в полость фолликула → поглощение йода из крови - окисление йода - йодирование тироглобулина в полости фолликула → эндоцитоз и расщепление тироглобулина → секреция T 3 и T 4 . Функцию фолликулярных клеток стимулирует тиротропин (ТТГ). Форма клеток (от низкой кубической до цилиндрической) эпителиальной стенки фолликула зависит от интенсивности их функционирования: высота клеток пропорциональна напряжённости осуществляемых в них процессов.

Базальная часть клеток содержит ядро, гладкий и шероховатый эндоплазматический ретикулум. В плазмолемму встроены связанные с G-белком рецепторы ТТГ, Na + /I - -котранспортёр. Возможна складчатость плазмолеммы (отражает интенсивность обмена между клетками и кровеносными капиллярами - захват йода, поступление метаболитов, секреция гормонов).

Латеральная часть клеток содержит межклеточные контакты, предупреждающие просачивание коллоида.

Апикальная часть содержит выраженный комплекс Гольджи (формирование секреторных пузырьков, присоединение углеводов к тироглобулину), разные типы пузырьков [секреторные (содержат тироглобулин), окаймлённые (незрелый тироглобулин из полости фолликула поступает в клетку для рециклизации и выве-

дения в кровоток), эндоцитозные (содержат зрелый тироглобулин для его последующей деградации в фаголизосомах)], микроворсинки (увеличение поверхности обмена между клетками и полостью фолликула). Апикальная плазмолемма содержит рецепторы N-ацетилгалактозамина (связывание незрелого тироглобулина для его интернализации путём опосредованного этими рецепторами эндоцитоза), рецепторы мегалина (интернализация, трансцитоз и секреция в кровь тироглобулина), анионообменники (перемещение йода из цитоплазмы клетки в полость фолликула). В связи с мембранными структурами апикальной части клеток находится тиропероксидаза. Продукция йодсодержащих гормонов. Синтез и секреция йодсодержащих гормонов включает несколько этапов (рис. 9-17). Йодсодержащие гормоны. Тироксин (T 4) и трийодтиронин (T 3) - водонерастворимые соединения, поэтому сразу после секреции в кровь гормоны образуют комплексы с транспортными белками плазмы, которые не только обеспечивают циркуляцию Т 3 и Т 4 в крови, но и предотвращают деградацию и экскрецию этих гормонов.

Тироксин (3,5,3",5"-тетрайодтиронин, C 15 H 11 I 4 NO 4 , M r 776,87) - основной йодсодержащий гормон, на долю T 4 приходится не менее 90% секретируемых щитовидной железой йодсодержащих гормонов.

L-форма тироксина физиологически примерно вдвое активнее рацемической (DL-тироксин), D-форма гормональной активности не имеет.

Дейодирование наружного кольца тироксина приводит к образованию Т 3 .

Дейодирование внутреннего кольца тироксина приводит к образованию реверсивного Т 3 (rT 3), имеющего незначительную физиологическую активность.

Трийодотиронин (3,5,3"-трийодтиронин, C 15 H 12 I 3 NO 4 , M r 650,98). На долю T 3 приходится лишь 10% содержащихся в крови йодсодержащих гормонов, но физиологическая активность T 3 примерно в четыре раза выше, чем тироксина.

Функции йодсодержащих гормонов многочисленны. Например, Т 3 и Т 4 увеличивают обменные процессы, ускоряют катаболизм белков, жиров и углеводов, эти гормоны необходимы для нормального развития ЦНС, они стимулируют рост хряща и поддерживают рост кости, увеличивают частоту сердечных сокращений и сердечный выброс. Крайне разнообразные эффекты йодсодержащих гормонов на клетки-мишени (ими практически являются все клетки организма) объясняют увеличением синтеза белков и потребления кислорода.

С-клетки

С-клетки в составе фолликулов называют также парафолликулярными клетками. В них происходит экспрессия кальцитонинового гена CALC1, кодирующего кальцитонин, катакальцин и относящийся к кальцитониновому гену пептид α. С-клетки крупнее тироцитов, в составе фолликулов расположены, как правило, одиночно. Морфология этих клеток характерна для клеток, синтезирующих белок на экспорт (присутствуют шероховатая эндоплазматическая сеть, комплекс Голь-

Рис. 9-17. Биосинтез йодсодержащих гормонов. 1. Йод поступает в тироцит через Na + /I - -котранспортёр. 2. Из цитоплазмы в полость фолликула йодид транспортируется через анионообменник SAT. 3. На границе апикальной мембраны тироцита и коллоида тиропероксидаза катализирует окисление йодида с образованием молекулы йода. 4. Тиропероксидаза катализирует йодирование остатков тирозина в молекуле тироглобулина с образованием монойодтирозина и дийодтирозина. 5. Синтез трийодтиронина и тетрайодтиронина. 6. Интернализация йодированного тироглобулина путём эндоцитоза. 7. Слияние эндоцитозного пузырька с лизосомой и деградация тироглобулина. 8. Высвобождение монойодтирозина, дийодтирозина, Т3 и Т4 в цитоплазму клетки. 9. Дейодирование и реутилизация монойодтирозина и дийодтирозина. 10. Секреция йодсодержащих гормонов в кровь.

джи, секреторные гранулы, митохондрии). На гистологических препаратах цитоплазма С-клеток выглядит светлее цитоплазмы тироцитов, отсюда их название - светлые (clear) клетки.

Кальцит онин - пептид, содержащий 32 аминокислотных остатка.

Регулятор экспрессии - Са 2+ плазмы крови, внутривенное его введение существенно увеличивает секрецию кальцитонина.

Функции кальцитонина, как одного из регуляторов кальциевого обмена, определяют как антагонистические функциям гормона паращитовидной железы.

Катакальцин - пептид, состоящий из 21 аминокислотного остатка, имеет те же функции, что и кальцитонин.

Относящиеся к кальцитониновому гену пептиды (CGRP) α и β (37 аминокислот) экспрессируются в ряде нейронов ЦНС и периферической нервной системы (особенно в связи с кровеносными сосудами). Их функции - участие в ноцицепции, пищевом поведении, в регуляции тонуса ГМК сосудов (вазодилатация), бронхов (бронхоконстрикция).

Хюртля клетки

Иногда в составе стенки фолликулов или между фолликулами находят крупные клетки с зернистой оксифильной цитоплазмой, содержащие много митохондрий - онкоциты, или клетки Хюртля (Гюртля, также Асканази-Хюртля).

Межфолликулярные клетки

К паренхиме щитовидной железы, помимо образующих фолликулы клеток, относятся также островки клеток, расположенные между фолликулами. Островки образованы способными синтезировать йодсодержащие гормоны клетками (малодифференцированные тироциты, формирующие новые фолликулы), а также С-клетками.

СТРОМА

Строма состоит из вспомогательных структур (капсула, интерстиций, нервные и сосудистые элементы). Капсула сформирована из плотной волокнистой соединительной ткани. От капсулы отходят тяжи (стандартное наименование - септы, или трабекулы) плотной волокнистой соединительной ткани, содержащие кровеносные и лимфатические сосуды, нервы.

Интерстиций. Пространство органа заполняет поддерживающий элементы паренхимы каркас из рыхлой волокнистой соединительной ткани с кровеносными и лимфатическими сосудами, отдельными нервными волокнами и их окончаниями.

Кровоток железы интенсивен и сопоставим с кровоснабжением мозга, перфузией крови через почки и печень. Кровеносные капилляры фенестрированного типа контактируют с эндокринными клетками паренхимы.

Иннервация

Соматическая чувствительная. В железе найдены чувствительные нервные окончания, образованные ветвлениями периферических отростков чувствительных нейронов.

Двигательная вегетативная (симпатическая и парасимпатическая). Преобладают сопровождающие кровеносные сосуды и иннервирующие их ГМК варикозные ветвления постганглионарных симпатических нейронов. Эффекты вегетативной иннервации на эндокринную функцию незначительны.

ОКОЛОЩИТОВИДНЫЕ ЖЕЛЕЗЫ

Четыре небольшие паращитовидные железы расположены на задней поверхности и под капсулой щитовидной железы. Эпителий нижних двух паращитовидных желёз развивается из энтодермы третьей пары глоточных карманов, верхних двух - из четвёртой пары. Функция желёз - синтез и секреция Са 2 +-регулирующего пептидного гормона паратиреокрина (паратиреоидного гормона, ПТГ). ПТГ вместе с кальцитонином и катакальцином, а также с витамином D регулирует обмен кальция и фосфатов.

Каждая из четырёх желёз имеет собственную тонкую капсулу, от которой отходят перегородки (септы), содержащие кровеносные сосуды. Паренхима, образованная тяжами и островками эпителиальных клеток, содержит два типа клеток - главные и оксифильные.

Главные клетки имеют базофильную цитоплазму (развита гранулярная эндоплазматическая сеть), комплекс Гольджи, мелкие митохондрии и секреторные гранулы диаметром 200-400 нм, содержащие

Оксифильные клетки равномерно распределены в паренхиме железы или образуют небольшие скопления, содержат крупные митохондрии, слабо выраженный комплекс Гольджи и умеренно развитую гранулярную эндоплазматическую сеть. Функция оксифильных клеток неизвестна, их число с возрастом увеличивается.

Жировые клетки всегда присутствуют в железе, с возрастом их количество увеличивается.

Паратиреоидный гормон, или паратиреокрин (паратирин, паратгормон, гормон паращитовидной железы, ПТГ, состоит из 84 аминокислотных остатков) поддерживает гомеостаз кальция и фосфатов. Регулятор экспрессии ПТГ - ионы Са 2+ , взаимодействующие с трансмембранными рецепторами главных клеток паращитовидных желёз. Са 2+ сыворотки регулирует секрецию ПТГ по механизму отрицательной обратной связи. Функции. ПТГ поддерживает гомеостаз Ca 2 +. Паратиреокрин увеличивает содержание Ca 2+ в плазме, усиливая его вымывание из костей, реабсорбцию в канальцах почки и всасывание в кишечнике.

НАДПОЧЕЧНИК

Надпочечники (см. рис. 9-24) - парные эндокринные органы, расположенные ретроперитонеально у верхних полюсов почки на уровне Th 12 и L 1 ; масса надпочечника - примерно 4 г. Фактически это две железы: кора (на долю коры приходится около 80% массы железы) и мозговая часть. Кора надпочечников синтезирует кортикостероиды (минералокортикоиды, глюкокортикоиды и андрогены), хромаффинная ткань мозговой части - катехоловые амины.

Развитие. На 6-й неделе внутриутробного развития крупные мезодермальные клетки целомического эпителия образуют скопления между основанием дорзальной брыжейки первичной кишки и развивающимися урогенитальными валиками. По направлению к этим скоплениям из ближайших симпатических ганглиев мигрируют клетки нервного гребня - будущие хромаффинные клетки мозгового вещества. В дальнейшем число хромаффинных клеток возрастает вплоть до завершения полового развития. Мезодермальные клетки формируют две зоны коры: наружную - дефинитивную и эмбриональную (фетальную), расположенную на границе с мозговым веществом. Незадолго до рождения начинается дегенерация фетальной коры, и к концу первого года жизни фетальная кора полностью исчезает. В течение первого года жизни в дефинитивной коре различимы клубочковая, пучковая и сетчатая зоны; полностью дифференцировка корковой части надпочечника завершается к третьему году жизни. Регенерация. Клетки коры и мозговой части железы способны поддерживать свою численность как путём их пролиферации, так и за счёт камбиального резерва.

Кора. Непосредственно под капсулой органа находятся эпителиальные камбиальные клетки, постоянно дифференцирующиеся в эндокринные клетки коры. АКТГ стимулирует пролиферацию камбиального резерва.

Мозговая часть. Часть мигрировавших сюда клеток нервного гребня сохраняется в виде камбиального резерва. Эти малодифференцированные клетки - источник развития новых хромаффинных клеток.

Кровоснабжение железы осуществляется из трёх источников: верхняя надпочечниковая артерия (ветвь нижней диафрагмальной артерии), средняя надпочечниковая артерия (отходит от аорты), нижняя надпочечниковая артерия (ветвь почечной артерии) (рис. 9-23). Верхняя и средняя надпочечниковые артерии дают начало капиллярам, пронизывающим корковое вещество и заканчивающимися мозговыми венозными синусами в мозговом веществе. Это означает, что гормоны, продуцируемые клетками коркового вещества, покидают кору, проходя через мозговое вещество, при этом глюкокортикоиды коры стимулируют секрецию адреналина из хромаффинных клеток. Это обстоятельство объясняет сочетанное вовлечение органа в развитие стрессовых ситуаций (адаптационный синдром, по Селье). Нижняя надпочечниковая артерия даёт начало мозговой артерии, которая кровоснабжает только мозговое вещество, минуя корковое, и заканчивается на мозговых венозных синусах. Медуллярные венозные синусы открываются в центральную вену.

КОРА НАДПОЧЕЧНИКА

Железа (рис. 9-24) окружена капсулой из плотной волокнистой соединительной ткани, от которой в толщу органа местами отходят соеди-

Рис. 9-23. Кровоснабжение надпочечника.

нительнотканные перегородки. Строма железы состоит из поддерживающей эндокринные клетки рыхлой волокнистой соединительной ткани, содержащей огромное количество кровеносных капилляров с фенестированным эндотелием. Паренхима - совокупность эпителиальных тяжей, имеющих различную ориентацию на разном расстоянии от капсулы надпочечника. Это обстоятельство, а также характер гормонального стероидогенеза позволяет выделить в коре клубочковую, пучковую и сетчатую зоны.

Клубочковая зона. Тяжи эндокринных клеток подворачиваются под капсулу и на срезе имеют вид клубочков (15% толщины коры). Здесь синтезируются минералокортикоиды (преимущественно альдостерон). Стимулятор синтеза альдостерона - ангиотензин II и в незначительной степени - АКТГ. Клетки (рис. 9-25Б) имеют плотное округлое ядро с одним или двумя ядрышками, развитую гладкую эндоплазматическую сеть, некрупные митохондрии с пластинчатыми кристами, ри-

Рис. 9-24. Надпочечник. Непосредственно под капсулой в составе корковой части находится клубочковая зона. Она состоит из узких и более мелких по сравнению с другими зонами клеток. Крупные многоугольные клетки образуют параллельные тяжи пучковой зоны. Правильный ход тяжей нарушается в сетчатой зоне корковой части надпочечника. Мозговая часть представлена переплетающимися тяжами крупных хромаффинных клеток. К тяжам прилегают синусоидные кровеносные капилляры с широким просветом.

босомы, хорошо развитый комплекс Гольджи и небольшое количество мелких липидных включений.

Пучковая зона занимает около 75% толщины коры. Тяжки эндокринных клеток и находящиеся между ними кровеносные капилляры расположены параллельно друг другу (в виде пучков). Здесь синтезируются глюкокортикоиды (преимущественно кортизол и кортизон), а также андрогены. Синтез глюкокортикоидов регулирует тропный гормон аденогипофиза - АКТГ. Клетки на гистологических препаратах выглядят как вакуолизированные (рис. 9-25А), поэтому их называют спонгиоциты. Вакуолизация клеток на гистологических препаратах отражает присутствие в цитоплазме спонгиоцитов значительного числа липидных капель (содержат преимущественно эфиры холестерина), вымываемых при подготовке препарата. Спонгиоциты содержат округлые митохондрии с кристами в виде трубочек и пузырьков, раз- ветвлённую гладкую эндоплазматическую сеть, элементы гранулярной эндоплазматической сети, лизосомы, многочисленные липидные включения и пигментные гранулы, содержащие липофусцин. Сетчатая зона. В наиболее глубоких частях коры (10% толщины коры) тяжи эндокринных клеток переплетаются, образуя подобие сети. В сетчатой зоне синтезируются глюкокортикоиды и стероидные гормоны типа андрогенов (дегидроэпиандростерон и андростендион). Тропный гормон - АКТГ. Гонадотропные гормоны гипофиза не влияют на секрецию гормонов в сетчатой зоне. В отличие от спонгиоцитов, клетки этой зоны содержат меньше липидных включений, но имеют крупные липофусциновые гранулы. Липофусциновые гранулы содержат лизосомальную кислую фосфатазу и рассматриваются как деградирующие лизосомы.

Стероидогенез гормонов коры надпочечника, а также стероидных гормонов половой сферы - сложный процесс (из железы выделено не менее 50 стероидов), по-разному происходящий в отдельных зонах коры. Стероидные гормоны, их промежуточные продукты, а также фармакологические аналоги гормонов синтезируются на базе холестерина. Процессы стероидогенеза обеспечивают ферменты, локализованные в митохондриях и гладкой эндоплазматической сети.

Глюкокортикоиды. Основной глюкокортикоид, секретируемый надпочечниками, - кортизол; на его долю приходится 80%. Остальные 20% - кортизон, кортикостерон, 11-дезоксикортизол и 11-дезоксикортикостерон. АКТГ - основной регулятор синтеза глюкокортикоидов. Для синтеза и секреции кортиколиберина, АКТГ и кортизола характерна выраженная суточная периодичность. При нормальном ритме сна увеличение секреции кортизола наступает после засыпания и достигает максимума при пробуждении. Функции глюкокортикоидов разнообразны: от регуляции метаболизма до модификации иммунологического и воспалительного ответов. Наиболее важный метаболический эффект глюкокортикоидов - преобразование жира и мышечных белков в гликоген.

Рис. 9-25. Эндокринные клетки коры надпочечника. А - клетка пучковой зоны, вырабатывающая глюкокортикоиды и андрогены. Клетку называют спонгиоцитом, т.к. она имеет пенистый вид из-за множества липидных капель в цитоплазме; содержит округлые митохондрии с кристами в виде трубочек и пузырьков, разветвлённую гладкую эндоплазматическую сеть. Б - клетка клубочковой зоны, вырабатывающая альдостерон. Присутствуют развитая гладкая эндоплазматическая сеть, некрупные митохондрии с пластинчатыми кристами и небольшое количество мелких липидных включений.

Минералокортикоиды. Альдостерон - основной минералокортикоид. Другие стероиды надпочечника - кортизол, 11-дезоксикортизол, 11-дезоксикортикостерон, кортикостерон - имеют и минералокортикоидную активность, хотя - сравнительно с альдостероном - их суммарный вклад мал. Ангиотензин II - компонент системы «ренин-ангиотензины» - главный регулятор синтеза и секреции альдостерона. Этот пептид стимулирует выброс альдостерона. Натриуретические факторы ингибируют синтез альдостерона. Функция минералокортикоидов - поддержание баланса электролитов жидкостей организма, осуществляется посредством влияния на реабсорбцию ионов в почечных канальцах.

Андрогены. В коре надпочечников синтезируются дегидроэпиандростерон и в меньшей степени андростендион.

МОЗГОВАЯ ЧАСТЬ НАДПОЧЕЧНИКА

Эндокринную функцию мозговой части надпочечника выполняют происходящие из нервного гребня хромаффинные клетки. При активации симпатической нервной системы надпочечники выбрасывают в кровь катехоловые амины (адреналин и норадреналин). Катехоламины имеют широкий спектр эффектов (воздействие на гликогенолиз, липолиз, глюконеогенез, существенное влияние на сердечно-сосудистую систему). Вазоконстрикция, параметры сокращения сердечной мышцы и другие эффекты катехоловых аминов реализуются через α- и β-адренергические рецепторы на поверхности клеток-мишеней (ГМК, секреторные клетки, кардиомиоциты). Серьёзные клинические проблемы возникают при опухолях эндокринных клеток и их предшественников (нейробластома, феохромоцитома). Строма. В нежном поддерживающем каркасе, состоящем из рыхлой волокнистой соединительной ткани, расположены многочисленные сосудистые полости - венозные синусы - вариант капилляров типа синусоидов. Их отличительная особенность - значительный диаметр просвета, достигающий десятков и сотен мкм.

Иннервация. Мозговая часть органа содержит множество преганглионарных нервных волокон симпатического отдела нервной системы, хромаффинные клетки расценивают как постганглионарное звено (модифицированные постганглионарные симпатические нейроны) двигательной вегетативной иннервации. Между хромаффинными клетками в мозговом веществе можно также видеть рассеянные небольшие группы ганглионарных клеток с неясной функцией.

Хромаффинные клетки

Хромаффинные клетки (рис. 9-29) содержат гранулы с электронноплотным содержимым, которое с бихроматом калия даёт хромаффинную реакцию. Хромаффинные клетки - основной клеточный элемент мозговой части надпочечников и параганглиев, расположенных

Рис. 9-29. Хромаффинная клетка. Характерны многочисленные электронно-плотные гранулы с катехоламинами. Значительный объём клетки занимает крупное ядро. Клетка содержит митохондрии, выраженный комплекс Гольджи, элементы гранулярной эндоплазматической сети.

по ходу крупных артериальных стволов (например, каротидное тело). Мелкие скопления и одиночные хромаффинные клетки находят также в сердце, почках, симпатических ганглиях.

Хромаффинные клетки содержат многочисленные митохондрии, выраженный комплекс Гольджи, элементы гранулярной эндоплазматической сети, многочисленные электронно-плотные гранулы, содержащие преимущественно норадреналин и/или адреналин (по этому признаку хромаффинные клетки подразделяют на две субпопуляции), а также АТФ, энкефалины и хромогранины. Адреналин-содержащие гранулы гомогенны. Норадреналин-содержащие гранулы характеризуются повышенной плотностью содержимого в центральной части и наличием светлого ободка по периферии под мембраной гранулы. Секреция гормонов из хромаффинных клеток происходит в результате стимулирующего влияния со стороны преганглионарных симпатических волокон и глюкокортикоидов. Секрет хромаффинных клеток содержит 10% норадреналина и 90% адреналина. Эти катехоламины имеют широкий спектр эффектов (воздействие на гликогенолиз, ли-

полиз, глюконеогенез, существенно влияние на сердечно-сосудистую систему). Вазоконстрикция, параметры сокращения сердечной мышцы и другие эффекты катехоловых аминов реализуются через α- и β-адренергические рецепторы на поверхности клеток-мишеней (ГМК, секреторные клетки, кардиомиоциты).

 

Возможно, будет полезно почитать: