Химическая классификация гормонов. Органы, ткани и клетки с эндокринной функцией

Регуляция метаболизма Система регуляции обмена веществ и функций организма образуют три иерархических уровня: 1 – ЦНС. Нервные клетки получают сигналы, поступающие из внешней среды, преобразуют их в нервный импульс и передают через синапсы, используя медиаторы (химические сигналы), которые вызывают изменения метаболизма в эффекторных клетках. 2 – эндокринная система. Включает гипоталамус, гипофиз и периферические эндокринные железы (а также отдельные клетки), синтезирующие гормоны и высвобождающие их в кровь при действии соответствующего стимула. 3 -внутриклеточный. Его составляют изменения метаболизма в пределах клетки или отдельного метаболического пути, в результате: изменения активности ферментов (активация, ингибирование) ; изменение кол-ва ферментов (индукция или репрессия синтеза или изменение скорости их разрушения) ; изменение скорости транспорта в-ва через мембраны клеток.

Регуляция метаболизма Синтез и секреция гормонов стимулируется внешними и внутренними сигналами, поступающими в ЦНС; Эти сигналы по нейронам поступают в гипоталамус, где стимулируют синтез пептидных релизинг-гормонов -либеринов и статинов, которые стимулируют или ингибируют, соответственно, синтез и секрецию гормонов передней доли гипофиза (тропных гормонов) ; Тропные гормоны стимулируют образование и секрецию гормонов периферических эндокринных желез, которые выделяются в общий кровоток и взаимодействуют с клетками-мишенями. Поддержание уровня гормонов за счет механизма обратной связи характерно для гормонов надпочечников, щитовидной железы, половых желез.

Регуляция метаболизма Не все эндокринные железы регулируются подобным образом: Гормоны задней доли гипофиза (окситоцин и вазопрессин) синтезируются в гипоталамусе в виде предшественников и хранятся в гранулах терминальных аксонов нейрогипофиза. Секреция гормонов поджелудочной железы (глюкагон и инсулин) напрямую зависит от концентрации глюкозы в крови.

Гормоны Гормоны – вещества органической природы, вырабатывающиеся в специализированных клетках желез внутренней секреции, поступающие в кровь и оказывающие регулирующее влияние на обмен веществ и физиологические функции. Классификация гормонов, основанная на их химической природе: 1) пептидные и белковые гормоны; 2) гормоны – производные аминокислот; 3) гормоны стероидной природы; 4) эйкозаноиды – гормоноподобные вещества, оказывающие местное действие.

Гормоны 1) Пептидные и белковые гормоны включают: гормоны гипоталамуса и гипофиза (тиролиберин, соматолиберин, соматостатин, гормон роста, кортикотропин, тиреотропин и др. – см. далее) ; гормоны поджелудочной железы (инсулин, глюкагон). 2) Гормоны – производные аминокислот: гормоны мозгового вещества надпочечников (адреналин и норадреналин) ; гормоны щитовидной железы (тироксин и его производные). 3) Гормоны стероидной природы: гормоны коркового вещества надпочечников(кортикостероиды) ; половые гормонами (эстрогены и андрогены) ; гормональная форма витамина D. 4) Эйкозаноиды: простагландины, тромбоксаны и лейкотриены.

Гормоны гипоталамуса Гипоталамус — место взаимодействия высших отделов ЦНС и эндокринной системы. В гипоталамусе открыто 7 стимуляторов (либерины) и 3 ингибитора (статины) секреции гормонов гипофиза, а именно: кортиколиберин, тиролиберин, люлиберин, фоллилиберин, соматолиберин, пролактолиберин, меланолиберин, соматостатин, пролактостатин и меланостатин; По химическому строению –низкомолекулярные пептиды. ц. АМФ участвует в передаче гормонального сигнала.

Гормоны гипофиза В гипофизе синтезируется ряд биологически активных гормонов белковой и пептидной природы, оказывающих стимулирующий эффект на различные физиологические и биохимические процессы в тканях-мишенях. В зависимости от места синтеза различают гормоны передней, задней и промежуточной долей гипофиза. В передней доле вырабатываются тропные гормонами (тропинами) , вследствие их стимулирующего действия на ряд других эндокринных желез.

Гормоны задней и средней долей гипофиза Гормоны задней доли гипофиза: Окситоцин у млекопитающих связан со стимуляцией сокращения гладких мышц матки при родах и мышечных волокон вокруг альвеол молочных желез, что вызывает секрецию молока. Вазопрессин стимулирует сокращение гладких мышечных волокон сосудов, однако основная роль его в организме сводится к регуляции водного обмена, откуда его второе название антидиуретического гормона. Гормональные эффекты, в частности вазопрессина, реализуются через аденилатциклазную систему. Гормоны средней доли гипофиза: Физиологическая роль меланотропинов заключается в стимулировании меланиногенеза у млекопитающих.

Гормоны щитовидной железы Синтезируются гормоны –йодированные производные аминокислоты тирозина. Трийодтиронин и тироксин (тетрайодтиронин). Регулируют скорость основного обмена, рост и дифференцировку тканей, обмен белков, углеводов и липидов, водно-электролитный обмен, деятельность ЦНС, пищеварительного тракта, гемопоэз, функцию сердечно- сосудистой системы, потребность в витаминах, сопротивляемость организма инфекциям и др. Точкой приложения действия тиреоидных гормонов, считается генетический аппарат.

Гормоны поджелудочной железы Поджелудочная железа относится к железам со смешанной секрецией. Панкреатические островки (островки Лангерганса) : α- (или А-) клетки продуцируют глюкагон, β- (или В-) клетки синтезируют инсулин, δ-(или D-) клетки вырабатывают соматостатин, F-клетки – малоизученный панкреатический полипептид. Инсулин Полипептид. В физиологической регуляции синтеза инсулина доминирующую роль играет концентрация глюкозы в крови. Повышение содержания глюкозы в крови вызывает увеличение секреции инсулина в панкреатических островках, а снижение ее содержания, наоборот.

Гормоны поджелудочной железы Глюкагон Полипептид. Вызывает увеличение концентрации глюкозы в крови главным образом за счет распада гликогена в печени. Органами-мишенями для глюкагона являются печень, миокард, жировая ткань, но не скелетные мышцы. Биосинтез и секреция глюкагона контролируются главным образом концентрацией глюкозы по принципу обратной связи. Действие через аденилатциклазную систему с образованием ц. АМФ.

Гормоны надпочечников Мозговое вещество вырабатывает гормоны, которые считаются производными аминокислот. Корковое вещество секретирует гормоны стероидной природы. Гормоны мозгового вещества надпочечников: Катехоламины (дофамин, адреналин и норадреналин) синтезируются из тирозина. Оказывают мощное сосудосуживающее действие, вызывая повышение АД. Регулируют обмен углеводов в организме. Адреналин вызывает резкое повышение уровня глюкозы в крови, что обусловлено ускорением распада гликогена в печени под действием фермента фосфорилазы. Адреналин, как и глюкагон, активирует фосфорилазу не прямо, а через систему аденилатциклаза-ц. АМФ-протеинкиназа

Гормоны надпочечников Гормоны коркового вещества надпочечников: Глюкокортикоиды -кортикостероиды, оказывающие влияние на обмен углеводов, белков, жиров и нуклеиновых кислот; кортикостерон, кортизон, гидрокортизон (кортизол), 11 — дезоксикортизол и 11 -дегидрокортикостерон. Минералокортикоиды -кортикостероиды, оказывающие преимущественное влияние на обмен солей и воды; дезоксикортикостерон и альдостерон. В основе их структуры лежит циклопентанпергидрофенантрен. Оказывают действие через ядерный аппарат. См. лекцию 13.

Молекулярные механизмы передачи гормонального сигнала По механизму действия гормоны можно разделить на 2 группы: 1) Гормоны, взаимодействующие с мембранными рецепторами (пептидные гормоны, адреналин, цитокины и эйкозаноиды) ; Действие реализуется в основном путем посттрансляционных (постсинтетических) модификаций белков в клетках, 2) Гормоны (стероидные, тиреоидные гормоны, ретиноиды, витамин D 3 -гормоны), взаимодействующие с внутриклеточными рецепторами выступают в качестве регуляторов экспрессии генов.

Механизмы передачи гормонального сигнала Гормоны, взаимодействующие с клеточными рецепторами, передают сигнал на уровне клетки через вторичные посредники (ц. АМФ, ц. ГМФ, Са 2+ , диацилглицерол). Каждой из этих систем посредников гормонального эффекта соответствует определенный класс протеинкиназ. протеинкиназа типа А регулируется ц. АМФ, протеинкиназы G – ц. ГМФ; Са 2+ — кальмодулинзависимые протеинкиназы — под контролем внутриклеточной [Са 2+ ], протеинкиназа типа С регулируется диацилглицеролом в синергизме со свободным Са 2+ и кислыми фосфолипидами. Повышение уровня какого-либо вторичного мессенджера приводит к активации соответствующего класса протеинкиназ и последующему фосфорилированию их белковых субстратов. В результате меняется не только активность, но и регуляторные и каталитические свойства многих ферментных систем клетки.

Молекулярные механизмы передачи гормонального сигнала Аденилатциклазная мессенджерная система: В нем задействовано мимимум пять белков: 1) рецептор гормона; 2) G-белок, осуществляющий связь между аденилатциклазой и рецептором; 3) фермент аденилатциклаза, выполняющая функцию синтеза циклического АМФ (ц. АМФ); 4) ц. АМФ-зависимая протеинкиназа, катализирующая фосфорилирование внутриклеточных ферментов или белков-мишеней, соответственно изменяя их активность; 5) фосфодиэстераза, которая вызывает распад ц. АМФ и тем самым прекращает (обрывает) действие сигнала

Молекулярные механизмы передачи гормонального сигнала Аденилатциклазная мессенджерная система: 1) C вязывание гормона с β-адренергическим рецептором приводит к структурным изменениям внутриклеточного домена рецептора, что обеспечивает взаимодействие рецептора со вторым белком сигнального пути – ГТФ-связывающим G -белком. 2) G-белок – представляет собой смесь2 типов белков: активного Gs и ингибиторного G i. Гормонрецепторный комплекс сообщает G-белку способность не только легко обменивать эндогенный связанный ГДФ на ГТФ, но и переводить Gs-белок в активированное состояние, при этом активный G-белок диссоциирует в присутствии ионов Mg 2+ на β-, γ-субъединицы и комплекс α-субъединицы Gs в ГТФ-форме; этот активный комплекс затем перемещается к молекуле аденилатциклазы и активирует ее.

Молекулярные механизмы передачи гормонального сигнала Аденилатциклазная мессенджерная система: 3) Аденилатциклаза представляет собой интегральный белок плазматических мембран, его активный центр ориентирован в сторону цитоплазмы и в активированном состоянии катализирует реакцию синтеза ц. АМФ из АТФ:

Молекулярные механизмы передачи гормонального сигнала Аденилатциклазная мессенджерная система: 4) Протеинкиназа А– это внутриклеточный фермент, через который ц. АМФ реализует свой эффект. Протеинкиназа А может существовать в 2 формах. В отсутствие ц. АМФ протеинкиназа не активна и представлена в виде тетрамерного комплекса из двух каталитических (С 2) и двух регуляторных (R 2) субъединиц. В присутствии ц. АМФ протеинкиназный комплекс обратимо диссоциирует на одну R 2 -субъединицу и две свободные каталитические субъединицы С; последние обладают ферментативной активностью, катализируя фосфорилирование белков и ферментов, соответственно изменяя клеточную активность. Адреналин, глюкагон.

Молекулярные механизмы передачи гормонального сигнала Ряд гормонов оказывает тормозящий эффект на аденилатциклазу, соответственно снижая уровень ц. АМФ и фосфорилирование белков. В частности, гормон соматостатин, соединяясь со своим специфическим рецептором – ингибиторным G-белком (Gi), ингибирует аденилатциклазу и синтез ц. АМФ, т. е. вызывает эффект, прямо противоположный вызываемому адреналином и глюкагоном.

Молекулярные механизмы передачи гормонального сигнала К внутриклеточной системе мессенджеров относят также производные фосфолипидов мембран эукариотических клеток, в частности фосфорилированные производные фосфатидилинозитола. Эти производные освобождаются в ответ на гормональный сигнал (например, от вазопрессина или тиротропина) под действием специфической мембраносвязанной фосфолипазы С. В результате последовательных реакций образуются два потен- циальных вторичных мессенджера – диацилглицерол и инозитол-1, 4, 5 -трифосфат.

Молекулярные механизмы передачи гормонального сигнала Биологические эффекты этих вторичных мессенджеров реализуютсяпо-разному. Диацилглицерол, как и свободны t ионов Са 2+ , действует через мембраносвязанный Са-зависимый фермент протеинкиназу С, которая катализирует фосфорилирование внутриклеточных ферментов, изменяя их активность. Инозитол-1, 4, 5 -трифосфат связывается со специфическим рецептором на эндоплазматическом ретикулуме, способствуя выходу из него ионов Са 2+ в цитозоль.

Молекулярные механизмы передачи гормонального сигнала Гормоны, взаимодействующие с внутриклеточными рецепторами: Изменяют экспрессию генов. Гормон после доставки с белками крови в клетку проникает (путем диффузии) через плазматическую мембрану и далее через ядерную мембрану и связывается с внутриядерным рецептором–белком. Комплекс стероид–белок затем связывается с регуляторной областью ДНК, с так называемыми гормончувствительными элементами, способствуя транскрипции соответствующих структурных генов, индукции синтеза белка de novo и изменению метаболизма клетки в ответ на гормональный сигнал.

Моноамины: Дофамин, норадреналин, адреналин, мелатонин.

Йодтиронины: Тетрайодтиронин (тироксин, Т 4), трийодтиронин (Т 3).

Белково-пептидные: рилизинг-гормоны гипоталамуса, гормоны гипофиза, гормоны поджелудочной железы и желудочно-кишечного тракта, ангитензины и др.

Стероиды: глюкокортикоиды, минералокортикоиды, половые гормоны, метаболиты холекальциферола (витамин D ).

Цикл жизни гормона

1. Синтез.

2. Секреция.

3. Транспорт. Аутокринное, паракринное и дистантное действие. Значение белков-переносчиков для стероидных и тиреоидных гормонов.

4. Взаимодействие гормона с рецепторами клеток-мишеней.

а) водорастворимые гормоны (пептиды, катехоламины) соединяются с рецепторами на мембране клеток-мишеней. Мембранные рецепторы для гормонов: хемочувствительный ионный канал; G -белки. В результате в клетке-мишени появляются вторичные посредники (например, цАМФ). Изменение активности ферментов → биологический эффект.

б) жирорастворимые гормоны (стероидные, йодсодержащие тиреоидные) проникают сквозь клеточную мембрану и соединяются с рецепторами внутри клетки-мишени. Комплекс «гормон-рецептор» регулирует экспрессию → развитие биологического эффекта.

5. Биологический эффект (сокращение или расслабление гладких мышц, изменение скорости обмена веществ, проницаемости клеточной мембраны, секреторные реакции и др.).

6. Инактивация гормонов и/или их экскреция (роль печени и почек).

Обратная связь

Скорость секреции гормона точно контролируется внутренней системой контроля. В большинстве случаев секреция регулируется механизмом отрицательной обратной связи (хотя крайне редко имеет место и положительная обратная связь). Итак, эндокринная клетка способна воспринимать последствия секреции определенного гормона. Это позволяет ей приспособить уровень секреции гормона для обеспечения желаемого уровня биологического эффекта.

А. Простая отрицательная обратная связь.

Если биологический эффект возрастает , количество гормона, секретируемого эндокринной клеткой, в дальнейшем будет снижаться .

Контролируемый параметр – уровень активности клетки-мишени. Если клетка-мишень слабо отвечает на гормон, эндокринная клетка будет выделять больше гормона, чтобы достигнуть желаемого уровня активности.

Б. Сложная (составная) отрицательная обратная связь осуществляется на различных уровнях.

Пунктирными линиями показаны различные варианты отрицательной обратной связи.

В. Положительная обратная связь: в конце фолликулярной фазы женского полового цикла возрастает концентрация эстрогенов, что приводит к резкому увеличению секреции (пику) ЛГ и ФСГ, возникающему перед овуляцией.

Самостоятельная работа по теме: «Физиология эндокринной системы»

Женские половые гормоны

_______________________

_______________________

_______________________

_______________________

Дни от пика ЛГ

Дни от начала цикла

Рис. 1. Изменение уровня гонадотропинов аденогипофиза (ЛГ, ФСГ), гормонов яичников (прогестерона и эстрадиола) и базальной температуры тела во время женского полового цикла.

Укажите рядом с графиками названия гормонов.

В яичнике в период женского полового цикла (продолжительностью в 28 дней) различают:

1. Фолликулярную фазу, которая длится с ______ по ______ день цикла. В эту фазу в яичнике ____________________________________________________________________________

2. Овуляция (О ) происходит на _____ день цикла. Овуляция – это ______________________ ____________________________________________________________________________________________________________________________________________________________

Овуляции предшествует пик _______________________________ гормона.

3. Фазу желтого тела, которая длится с ______ дня по ________ день. В эту фазу в яичнике ______________________________________________________________________________ ____________________________________________________________________________________________________________________________________________________________

В матке в период женского полового цикла различают:

1. Менструацию (М ) – ____________________________________________________________ ______________________________________________________________________________

2. Пролиферативную фазу – ______________________________________________________ ____________________________________________________________________________________________________________________________________________________________

3. Секреторную фазу – __________________________________________________________ ____________________________________________________________________________________________________________________________________________________________

Пользуясь рис. 1 , дополните предложения:

1. Наибольшая концентрация в плазме эстрадиола на _______ день цикла, т.е. в ________________________ фазу.

2. Наибольшая концентрация в плазме прогестерона на ________ день цикла, т.е. в ________________________ фазу.

3. Непосредственно перед овуляцией наблюдается пик гормонов __________________.

4. Подъем базальной температуры тела во время овуляции и в фазу желтого тела связан с секрецией гормона ________________________________.

Менопауза

Менопауза – это ________________________________________________________________

____________________________________________________________________________________________________________________________________________________________

В менопаузу секреция:

а) прогестерона, эстрадиола ________________________

б) ФСГ, ЛГ ________________________

в) половых гормонов (андрогенов) в корковом веществе надпочечников _________________

В период менопаузы изменяется деятельность систем организма: ______________________

____________________________________________________________________________________________________________________________________________________________

Эпифиз (шишковидная железа)

Гормон эпифиза: __________________________________________

(аминокислота триптофан → серотонин → ____________________)

Регуляция секреции:

Темнота (стимулирующее влияние) → сетчатка глаза → ретино-гипоталамический тракт → латеральная область гипоталамуса → спинной мозг → симпатические нервы (преганглионарный нейрон) → верхний шейный ганглий → постганглионарный нейрон → пинеалоциты эпифиза → увеличение синтеза и секреции мелатонина.

Примечание: 1) медиатор постганглионарного нейрона, который взаимодействует с β-адренорецепторами пинеалоцитов эпифиза, _____________________________________

2) свет оказывает _________________________ влияние на синтез и секрецию мелатонина

3) на ночные часы приходится 70% суточной продукции гормона

4) стресс ___________________________ секрецию мелатонина

Механизм действия и эффект

1. Мелатонин _____________ секрецию гонадолиберинов гипоталамуса и ________________ аденогипофиза → снижение половых функций.

2. Введение мелатонина вызывает легкую эйфорию, сон.

3. К началу полового созревания уровень мелатонина _______________________________.

4. Во время женского полового цикла уровень мелатонина изменяется: во время менструации – ___________________________, а во время овуляции – _________________________.

5. Эпифиз – биологические часы, т.к. благодаря ему происходит временная адаптация.

Клинические проявления недостатка и избытка гормона:

1. Опухоли, разрушающие эпифиз, _______________________ половую функцию.

2. Опухоли, происходящие из пинеалоцитов, сопровождаются______________________

половой функции.

Регуляция уровня Ca 2+ в крови

1. Определение понятия "гормоны", классификация и общие биологические признаки гормонов.

2. Классификация гормонов по химической природе, примеры.

3. Механизмы действия дистантных и проникающих в клетку гормонов.

4. Посредники действия гормонов на обмен веществ - циклические нуклеотиды (цАМФ, цГМФ), ионы Са2+ , инозитолтрифосфат, рецепторные белки цитозоля. Реакции синтеза и распада цАМФ.

5. Каскадные механизмы активации ферментов, как способ усиления гормонального сигнала. Роль протеинкиназ.

6. Иерархия гормональной системы. Принцип обратной связи в регуляции секреции гормонов.

7. Гормоны гипоталамуса и передней доли гипофиза: химическая природа, механизм действия, ткани и клетки-мишени, биологический эффект.

23.1. Определение понятия “гормоны” и их классификация по химической природе.

23.1.1. Выучите определение понятия: гормоны - биологически активные соединения, выделяемые железами внутренней секреции в кровь или лимфу и оказывающие влияние на метаболизм клетки.

23.1.2. Запомните основные особенности действия гормонов на органы и ткани:

  • гормоны синтезируются и выделяются в кровь специализированными эндокринными клетками;
  • гормоны обладают высокой биологической активностью - физиологическое действие проявляется при концентрации их в крови порядка 10-6 - 10-12 моль/л;
  • каждый гормон характеризуется присущей только ему структурой, местом синтеза и функцией; дефицит одного гормона не может быть восполнен другими веществами;
  • гормоны, как правило, влияют на отдалённые от места их синтеза органы и ткани.

23.1.3. Гормоны осуществляют своё биологическое действие, образуя комплекс со специфическими молекулами - рецепторами . Клетки, содержащие рецепторы к определённому гормону, называются клетками-мишенями для этого гормона. Большинство гормонов взаимодействуют с рецепторами, расположенными на плазматической мембране клеток-мишеней; другие гормоны взаимодействуют с рецепторами, локализованными в цитоплазме и ядре клеток-мишеней. Имейте в виду, что дефицит как гормонов, так и их рецепторов может приводить к развитию заболеваний.

23.1.4. Некоторые гормоны могут синтезироваться эндокринными клетками в виде неактивных предшественников - прогормонов . Прогормоны могут запасаться в большом количестве в специальных секреторных гранулах и быстро активироваться в ответ на соответствующий сигнал.

23.1.5. Классификация гормонов основана на их химическом строении. Различные химические группы гормонов приведены в таблице 23.1.

Таблица 23.1. Химическая природа гормонов
Класс химических веществ Гормон или группа гормонов Основное место синтеза
Белки и пептиды Либерины
Статины
Гипоталамус
Вазопрессин
Окситоцин
Гипоталамус*

Тропные гормоны

Передняя доля гипофиза (аденогипофиз)

Инсулин
Глюкагон
Поджелудочная железа (островки Лангерганса)
Паратгормон Паращитовидные железы
Кальцитонин Щитовидная железа
Производные аминокислот Иодтиронины
(тироксин,
трииодтиронин)
Щитовидная железа
Катехоламины
(адреналин,
норадреналин)
Мозговой слой надпочечников, симпатическая нервная система
Стероиды Глюкокортикоиды
(кортизол)
Кора надпочечников
Минералокортикоиды
(альдостерон)
Кора надпочечников
Андрогены
(тестостерон)
Семенники
Эстрогены
(эстрадиол)
Яичники
Прогестины
(прогестерон)
Яичники

* Местом секреции этих гормонов является задняя доля гипофиза (нейрогипофиз).

Следует иметь в виду, что кроме истинных гормонов выделяют также гормоны местного действия . Эти вещества синтезируются, как правило, неспециализированными клетками и оказывают свой эффект в непосредственной близости от места выработки (не переносятся током крови к другим органам). Примерами гормонов местного действия являются простагландины, кинины, гистамин, серотонин.

23.2. Иерархия регуляторных систем в организме.

23.2.1. Запомните, что в организме существует несколько уровней регуляции гомеостаза, которые тесно взаимосвязаны и функционируют как единая система (см. рисунок 23.1).

Рисунок 23.1. Иерархия регуляторных систем организма (пояснения в тексте).

23.2.2. 1. Сигналы из внешней и внутренней среды поступают в центральную нервную систему (высший уровень регуляции, осуществляет контроль в пределах целого организма). Эти сигналы трансформируются в нервные импульсы, попадающие на нейросекреторные клетки гипоталамуса. В гипоталамусе образуются:

  1. либерины (или рилизинг-факторы), стимулирующие секрецию гормонов гипофиза;
  2. статины - вещества, угнетающие секрецию этих гормонов.

Либерины и статины по системе портальных капилляров достигают гипофиза, где вырабатываются тропные гормоны . Тропные гормоны действуют на периферические ткани-мишени и стимулируют(знак “+”) образование и секрецию гормонов периферических эндокринных желёз. Гормоны периферических желёз угнетают (знак “-”) образование тропных гормонов, действуя на клетки гипофиза или нейросекреторные клетки гипоталамуса. Кроме того, гормоны, действуя на обмен веществ в тканях, вызывают изменения содержания метаболитов в крови , а те, в свою очередь, влияют (по механизму обратной связи) на секрецию гормонов в периферических железах (или непосредственно, или через гипофиз и гипоталамус).

2. Гипоталамус, гипофиз и периферические железы образуют средний уровень регуляции гомеостаза, обеспечивающий контроль нескольких метаболических путей в пределах одного органа, или ткани, или разных органов.

Гормоны эндокринных желёз могут влиять на обмен веществ:

  • путём изменения количества ферментного белка;
  • путём химической модификации ферментного белка с изменением его активности, а также
  • путём изменения скорости транспорта веществ через биологические мембраны.

3. Внутриклеточные механизмы регуляции представляют собой низший уровень регуляции. Сигналами для изменения состояния клетки служат вещества, образующиеся в самих клетках или поступающие в неё.

23.3. Механизмы действия гормонов.

29.3.1. Обратите внимание, что механизм действия гормонов зависит от его химической природы и свойств - растворимости в воде или жирах. По механизму действия гормоны могут быть разделены на две группы: прямого и дистантного действия.

29.3.2. Гормоны прямого действия. К этой группе относятся липофильные (растворимые в жирах) гормоны - стероиды и йодтиронины . Эти вещества мало растворимы в воде и поэтому образуют в крови комплексные соединения с белками плазмы. К этим белкам относятся как специфические транспортные протеины (например, транскортин, связывающий гормоны коры надпочечников), так и неспецифические (альбумины).

Гормоны прямого действия в силу своей липофильности способны диффундировать через двойной липидный слой мембран клеток-мишеней. Рецепторы к этим гормонам находятся в цитозоле. Образующийсякомплекс гормона с рецептором перемещается в ядро клетки, где связывается с хроматином и воздействует на ДНК. В результате изменяется скорость синтеза РНК на матрице ДНК (транскрипция) и скорость образования специфических ферментативных белков на матрице РНК (трансляция). Это приводит к изменению количества ферментативных белков в клетках-мишенях и изменению в них направленности химических реакций (см. рисунок 2).


Рисунок 23.2. Механизм влияния на клетку гормонов прямого действия.

Как вам уже известно, регуляция синтеза белка может осуществляться при помощи механизмов индукции и репрессии.

Индукция синтеза белка происходит в результате стимуляции синтеза соответствующей матричной РНК. При этом возрастает концентрация определённого белка-фермента в клетке и увеличивается скорость катализируемых им химических реакций.

Репрессия синтеза белка происходит путём подавления синтеза соответствующей матричной РНК. В результате репрессии избирательно снижается концентрация определённого белка-фермента в клетке и уменьшается скорость катализируемых им химических реакций. Имейте в виду, что один и тот же гормон может вызывать индукцию синтеза одних белков и репрессию синтеза других белков. Эффект гормонов прямого действия обычно проявляется только спустя 2 - 3 часа после проникновения в клетку.

23.3.3. Гормоны дистантного действия. К гормонам дистантного действия относятся гидрофильные (растворимые в воде) гормоны - катехоламины и гормоны белково-пептидной природы. Так как эти вещества не растворимы в липидах, они не могут проникать через клеточные мембраны. Рецепторы для этих гормонов расположены на наружной поверхности плазматической мембраны клеток-мишеней. Гормоны дистантного действия реализуют своё действие на клетку при помощи вторичного посредника , в качестве которого чаще всего выступает циклический АМФ (цАМФ).

Циклический АМФ синтезируется из АТФ под действием аденилатциклазы:


Механизм дистантного действия гормонов показан на рисунке 23.3.


Рисунок 23.3. Механизм влияния на клетку гормонов дистантного действия.

Взаимодействие гормона с его специфическим рецептором приводит к активации G -белка клеточной мембраны. G-белок связывает ГТФ и активирует аденилатциклазу .

Активная аденилатциклаза превращает АТФ в цАМФ, цАМФ активирует протеинкиназу .

Неактивная протеинкиназа представляет собой тетрамер, который состоит из двух регуляторных (R) и двух каталитических (C) субъединиц. В результате взаимодействия с цАМФ происходит диссоциация тетрамера и освобождается активный центр фермента.

Протеинкиназа фосфорилирует белки-ферменты за счёт АТФ, либо активируя их, либо инактивируя. В результате этого изменяется (в одних случаях - увеличивается, в других - уменьшается) скорость химических реакций в клетках-мишенях.

Инактивация цАМФ происходит при участии фермента фосфодиэстеразы:

23.4. Гормоны гипоталамуса и гипофиза.

Как уже упоминалось, местом непосредственного взаимодействия высших отделов центральной нервной системы и эндокринной системы является гипоталамус. Это небольшой участок переднего мозга, который расположен непосредственно над гипофизом и связан с ним при помощи системы кровеносных сосудов, образующих портальную систему.

23.4.1. Гормоны гипоталамуса. В настоящее время известно, что нейросекреторные клетки гипоталамуса продуцируют 7 либеринов (соматолиберин, кортиколиберин, тиреолиберин, люлиберин, фоллиберин, пролактолиберин, меланолиберин) и 3 статина (соматостатин, пролактостатин, меланостатин). Все эти соединения являются пептидами .

Гормоны гипоталамуса через специальную портальную систему сосудов попадают в переднюю долю гипофиза (аденогипофиз). Либерины стимулируют, а статины подавляют синтез и секрецию тропных гормонов гипофиза. Эффект либеринов и статинов на клетки гипофиза опосредуется цАМФ- и Са2+ -зависимыми механизмами.

Характеристика наиболее изученных либеринов и статинов приведена в таблице 23.2.

Таблица 23.2. Гипоталамические либерины и статины
Фактор Место действия Регуляция секреции
Кортиколиберин Аденогипофиз Стимулирует секрецию адренокортикотропного гормона (АКТГ) Секреция стимулируется при стрессах и подавляется АКТГ
Тиреолиберин - “ - “ - Стимулирует секрецию тиреотропного гормона (ТТГ) и пролактина Секрецию тормозят тиреоидные гормоны
Соматолиберин - “ - “ - Стимулирует секрецию соматотропного гормона (СТГ) Секрецию стимулирует гипогликемия
Люлиберин - “ - “ - Стимулирует секрецию фолликулостимулирующего гормона (ФСГ) и лютеинизирующего гормона (ЛГ) У мужчин секреция вызывается снижением содержания тестостерона в крови, у женщин - снижением концентрации эстрогенов. Высокая концентрация ЛГ и ФСГ в крови подавляет секрецию
Соматостатин - “ - “ - Тормозит секрецию СТГ и ТТГ Секреция вызывается физической нагрузкой. Фактор быстро инактивируется в тканях тела.
Пролактостатин - “ - “ - Тормозит секрецию пролактина Секрецию стимулирует высокая концентрация пролактина и подавляют эстрогены, тестостерон и нервные сигналы при сосании.
Меланостатин - “ - “ - Угнетает секрецию МСГ (меланоцитостимулирующего гормона) Секрецию стимулирует меланотонин

23.4.2. Гормоны аденогипофиза. Аденогипофиз (передняя доля гипофиза) продуцирует и выделяет в кровь ряд тропных гормонов, регулирующих функцию как эндокринных, так и неэндокринных органов. Все гормоны гипофиза являются белками или пептидами. Внутриклеточным посредником всех гипофизарных гормонов (кроме соматотропина и пролактина) служит циклический АМФ (цАМФ). Характеристика гормонов передней доли гипофиза приводится в таблице 3.

Таблица 3. Гормоны аденогипофиза
Гормон Ткань-мишень Основные биологические эффекты Регуляция секреции
Адренокортикотропный гормон (АКТГ) Кора надпочечников Стимулирует синтез и секрецию стероидов корой надпочечников Стимулируется кортиколиберином
Тиреотропный гормон (ТТГ) Щитовидная железа Усиливает синтез и секрецию тиреоидных гормонов Стимулируется тиреолиберином и подавляется тиреоидными гормонами
Соматотропный гормон (гормон роста, СТГ) Все ткани Стимулирует синтез РНК и белка, рост тканей, транспорт глюкозы и аминокислот в клетки, липолиз Стимулируется соматолиберином, подавляется соматостатином
Фолликулостимулирующий гормон (ФСГ) Семенные канальцы у мужчин, фолликулы яичников у женщин У мужчин повышает образование спермы, у женщин - образование фолликулов Стимулируется люлиберином
Лютеинизирующий гормон (ЛГ) Интерстициальные клетки семенников (у мужчин) и яичников (у женщин) Вызывает секрецию эстрогенов, прогестерона у женщин, усиливает синтез и секрецию андрогенов у мужчин Стимулируется люлиберином
Пролактин Молочные железы (альвеолярные клетки) Стимулирует синтез белков молока и развитие молочных желёз Подавляется пролактостатином
Меланоцитостимулирующий гормон (МСГ) Пигментные клетки Повышает синтез меланина в меланоцитах (вызывает потемнение кожи) Подавляется меланостатином

23.4.3. Гормоны нейрогипофиза. К гормонам, секретируемым в кровоток задней долей гипофиза, относятся окситоцин и вазопрессин. Оба гормона синтезируются в гипоталамусе в виде белков-предшественников и перемещаются по нервным волокнам в заднюю долю гипофиза.

Окситоцин - нонапептид, вызывающий сокращения гладкой мускулатуры матки. Он используется в акушерстве для стимуляции родовой деятельности и лактации.

Вазопрессин - нонапептид, выделяемый в ответ на повышение осмотического давления крови. Клетками-мишенями для вазопрессина являются клетки почечных канальцев и гладкомышечные клетки сосудов. Действие гормона опосредовано цАМФ. Вазопрессин вызывает сужение сосудов и повышение артериального давления, а также усиливает реабсорбцию воды в почечных канальцах, что приводит к снижению диуреза.

23.4.4. Основные виды нарушений гормональной функции гипофиза и гипоталамуса. При дефиците соматотропного гормона, возникающем в детском возрасте, развивается карликовость (низкий рост). При избытке соматотропного гормона, возникающем в детском возрасте, развивается гигантизм (аномально высокий рост).

При избытке соматотропного гормона, возникающем у взрослых (в результате опухоли гипофиза), развивается акромегалия - усиленный рост кистей рук, ступней, нижней челюсти, носа.

При недостатке вазопрессина, возникающем вследствие нейротропных инфекций, черепно-мозговых травм, опухолей гипоталамуса, развивается несахарный диабет. Основным симптомом этого заболевания является полиурия - резкое увеличение диуреза при пониженной (1,001 - 1,005) относительной плотности мочи.

28.4. Гормоны поджелудочной железы.

Обратите внимание, что эндокринная часть поджелудочной железы продуцирует и выделяет в кровь гормоны инсулин и глюкагон.

1. Инсулин. Инсулин - белково-пептидный гормон, вырабатываемый β-клетками островков Лангерганса. Молекула инсулина состоит из двух полипептидных цепей (А и В), содержащих 21 и 30 аминокислотных остатков соответственно; цепи инсулина связаны между собой двумя дисульфидными мостиками. Образуется инсулин из белка-предшественника (препроинсулина) путём частичного протеолиза (см. рисунок 4). После отщепления сигнальной последовательности образуется проинсулин. В результате ферментативного превращения удаляется фрагмент полипептидной цепи, содержащий около 30 аминокислотных остатков (С-пептид), и образуется инсулин.

Стимулом для секреции инсулина является гипергликемия - повышение содержания глюкозы в крови (например, после приёма пищи). Главные мишени для инсулина - клетки печени, мышц и жировой ткани. Механизм действия - дистантный.


Рисунок 4. Схема превращения препроинсулина в инсулин.

Рецептор инсулина представляет собой сложный белок - гликопротеин, расположенный на поверхности клетки-мишени. Этот белок состоит их двух α-субъединиц и двух β-субъединиц, связанных между собой дисульфидными мостиками. β-Субъединицы содержат несколько аминокислотных остатков тирозина. Рецептор инсулина обладает тирозинкиназной активностью, т.е. способен катализировать перенос остатков фосфорной кислоты от АТФ на ОН-группу тирозина (рисунок 5).

Рисунок 5. Инсулиновый рецептор.

В отсутствие инсулина рецептор не проявляет ферментативной активности. При связывании с инсулином рецептор подвергается аутофосфорилированию, т.е. β-субъединицы фосфорилируют друг друга. В результате изменяется конформация рецептора и он приобретает способность фосфорилировать другие внутриклеточные белки. В дальнейшем комплекс инсулина с рецептором погружается в цитоплазму и его компоненты расщепляются в лизосомах.

Образование гормон-рецепторного комплекса повышает проницаемость клеточных мембран для глюкозы и аминокислот. Под действием инсулина в клетках-мишенях:

а) снижается активность аденилатциклазы и увеличивается активность фосфодиэстеразы, что приводит к понижению концентрации цАМФ;

б) повышается скорость окисления глюкозы и снижается скорость глюконеогенеза;

в) увеличивается синтез гликогена и жиров и подавляется их мобилизация;

г) ускоряется синтез белка и тормозится его распад.

Все эти изменения направлены на ускоренное использование глюкозы, что приводит к снижению содержания глюкозы в крови. Инактивация инсулина происходит главным образом в печени и заключается в разрыве дисульфидных связей между цепями А и В.

2. Глюкагон. Глюкагон - полипептид, содержащий 29 аминокислотных остатков. Он продуцируется α-клетками островков Лангерганса в виде белка-предшественнника (проглюкагона). Частичный протеолиз прогормона и секреция глюкагона в кровь происходит при гипогликемии, вызванной голоданием.

Клетки-мишени для глюкагона - печень, жировая ткань, миокард. Механизм действия - дистантный (посредником является цАМФ).

Под действием глюкагона в клетках-мишенях:

а) ускоряется мобилизация гликогена в печени (см. рисунок 6) и тормозится его синтез;

б) ускоряется мобилизация жиров (липолиз) в жировой ткани и тормозится их синтез;

в) угнетается синтез белка и усиливается его катаболизм;

г) ускоряется глюконеогенез и кетогенез в печени.

Конечный эффект глюкагона - поддержание высокого уровня глюкозы в крови.

Рисунок 6. Каскадный механизм активации фосфорилазы гликогена под влиянием глюкагона.

3. Нарушения гормональной функции поджелудочной железы. Наиболее часто встречается сахарный диабет - заболевание, обусловленное нарушением синтеза и секреции инсулина β-клетками (диабет I типа) либо дефицитом инсулинчувствительных рецепторов в клетках-мишенях (диабет II типа). Для сахарного диабета характерны следующие нарушения обмена веществ:

а) снижение использования глюкозы клетками, усиление мобилизации гликогена и активация глюконеогенеза в печени приводят к увеличению содержания глюкозы в крови (гипергликемия) и преодоление ею почечного порога (глюкозурия);

б) ускорение липолиза (расщепления жиров), избыточное образование ацетил-КоА, используемого для синтеза с последующим поступлением в кровь холестерола (гиперхолестеролемия) и кетоновых тел (гиперкетонемия); кетоновые тела легко проникают в мочу (кетонурия);

в) снижение скорости синтеза белка и усиление катаболизма аминокислот в тканях приводит к повышению концентрации мочевины и других азотистых веществ в крови (азотемия) и увеличению их выведения с мочой (азотурия);

г) выведение почками больших количеств глюкозы, кетоновых тел и мочевины сопровождается увеличением диуреза (полиурия).

28.5. Гормоны мозгового вещества надпочечников.

К гормонам мозгового вещества надпочечников относятся адреналин и норадреналин (катехоламины). Они синтезируются в хромаффинных клетках из тирозина (рисунок 7).


Рисунок 7. Схема синтеза катехоламинов.

Секреция адреналина усиливается при стрессе, физических нагрузках. Мишени для катехоламинов - клетки печени, мышечной и жировой ткани, сердечно-сосудистая система. Механизм действия - дистантный. Эффекты реализуются через аденилатциклазную систему и проявляются изменениями углеводного обмена. Подобно глюкагону, адреналин вызывает активацию мобилизации гликогена (см. рисунок 6) в мышцах и печени, липолиз в жировой ткани. Это приводит к увеличению содержания глюкозы, лактата и жирных кислот в крови. Адреналин усиливает также сердечную деятельность, вызывает сужение сосудов.

Обезвреживание адреналина происходит в печени. Основными путями обезвреживания являются: метилирование (фермент - катехол-орто-метилтрансфераза, КОМТ), окислительное дезаминирование (фермент - моноаминооксидаза, МАО) и конъюгация с глюкуроновой кислотой. Продукты обезвреживания выводятся с мочой.

15.1. Интеграция обмена веществ

Вышеприведенное раздельное описание реакций, характерных для обмена углеводов, липидов и белков, является искусственным и вызывается исключительно удобством для изучения.

В действительности обмен веществ протекает как единое целое, одновременно и совместно, хотя и в разном объеме. Уже первый этап обмена– пищеварение – представляет собой одновременное расщепление углеводов, липидов и белков. Еще большая общность обмена различных соединений имеется при внутриклеточном обмене. Такие реакции как переаминирование, переметилирование, переамидирование, пересульфирование и др. путем межмолекулярного переноса атомных групп обеспечивает возможность перехода одних химических веществ в другие.

Одним из промежуточных продуктов расщепления углеводов является ацетил-КоА. Но и при распаде жиров и при окислении углеродной цепочки аминокислот появляется это же промежуточное вещество. Именно в этом пункте, в момент образования одного и того же промежуточного вещества– ацетил-КоА – углеводный, жировой и белковый обмен сливаются воедино. Далее ацетил-КоА независимо от своего происхождения расщепляется в -ли моннокислом цикле, сопряженном с цепью дыхательных ферментов, до одних и тех же конечных продуктов обмена: углекислоты и воды. Именно в лимоннокислом цикле происходит полное и окончательное объединение процессов обмена белков, липидов и углеводов, и именно отсюда идут пути взаимных превращений этих веществ.

При определенных условиях единство обмена различных веществ может опять дифференцироваться и пойти по разным путям. На этом основана возможность взаимопревращения углеводов, жиров, аминокислот, перехода одного вещества в другое. В частности, ацетил-КоА, НАДФ.H2 , фосфодиоксиацетон, полученные при расщеплении углеводов, или ацетил-КоА из безазотистого остатка аминокислот, могут синтезироваться в жирные кислоты и жиры. И, наоборот, углеводы в животном организме могут синтезироваться из продуктов окисления жиров и белков, т.е. из продуктов лимоннокислого цикла через

оксалоацетат и обращение ряда реакций гликолиза с включением обходных путей для необратимых реакций гликолиза. Это можно наблюдать в особенно большом количестве при сахарном диабете. У растений и микроорганизмов образование глюкозы может происходить из ацетил-КоА через гликооксилатный цикл.

308 15. Интеграция и регуляция обмена веществ. Гормоны

Многие заменимые аминокислоты могут синтезироваться, как мы видели выше, из промежуточных продуктов расщепления углеводов и жиров(т.е. кетокислот и непредельных кислот путем их аминирования). К примеру, из пировиноградной кислоты может образоваться аланин, из кетоглутаровой – глутаминовая кислота, из щавелево-уксусной и фумаровой кислот– аспарагиновая кислота.

Конечно, возможности биосинтеза аминокислот из других веществ значительно ниже, по сравнению с синтезом жиров и углеводов. Образование новых аминокислот может происходить только при наличии в тканях свободного аммиака, освобождающегося при дезаминировании других аминокислот. Переаминирование сумму аминокислот не меняет.

Естественно, что незаменимые аминокислоты не могут синтезироваться из жиров и углеводов и из заменимых аминокислот. Поэтому белки и являются незаменимой составной частью пищи человека и животных.

Таким образом, изучение различных видов обмена веществ свидетельствует, что обмен веществ представляет собой стройный ансамбль многочисленных и тесно связанных друг с другом химических процессов, в которых ключевыми метаболитами служат пируват, a -глицерофосфат, ацетил-КоА, метаболиты цикла Кребса, а лимитирующими факторами являются незаменимые аминокислоты и незаменимые полиеновые жирные кислоты. Ведущая роль в этом сложнейшем ансамбле принадлежит белкам. Благодаря их каталитической функции осуществляется все многочисленное множество химических реакций распада и синтеза. С помощью нуклеиновых кислот поддерживается строгая специфичность при биосинтезе макромолекул, т.е. в конечном счете, видовая специфичность в строении важнейших биополимеров. Благодаря, главным образом, обмену углеводов и липидов, в организме постоянно возобновляются запасы АТФ– универсального источника энергии для биохимических преобразований. Эти пути поставляют также простейшие органические молекулы, из которых строятся биополимеры и другие соединения, включающиеся в состав организма в процессе непрерывного самообновления живой материи.

15.2. Нейрогуморальная регуляция обмена веществ, роль гормонов

В каждой клетке живого организма одновременно протекают огромное количество реакций обмена углеводов, липидов, белков и других веществ. И в то же время в любой клетке соблюдается строгий порядок течения биохимических процессов, строгая их направленность и согласованность, связанная с условиями внешней среды и направленная на поддержание постоянства внутренней среды (гомеостаза). Такое состояние обменных реакций достигается

15. Интеграция и регуляция обмена веществ. Гормоны 309

тем, что в процессе эволюции в живых организмах сформирована определенная, свойственная только живому, организация биохимических процессов, с одной стороны, а с другой – выработалась стройная система регуляции обмена веществ на различных уровнях. Наиболее простыми являются внутриклеточные механизмы регуляции, важнейшими элементами которых являются:

1) изменение проницаемости биологических мембран;

2) аллостерическое изменение активности ферментных белков;

3) изменение количества молекул ферментов путем регуляции биосинтеза ферментных белков на генетическом уровне.

В организме высших животных и человека ведущую роль в регуляции биохимических реакций выполняет сложно построенная, возникшая в процессе эволюции, нервно-эндокринная система. У этих организмов вся информация о состоянии обмена веществ в тканях в виде нервных импульсов или -хи мических сигналов поступает в центральную нервную систему и железы внутренней секреции. В головном мозге эта информация перерабатывается и в виде сигналов передается как непосредственно в ткани, так и в железы внутренней секреции. Последние вырабатывают особые вещества-гормоны, которые изменяют (регулируют) биохимические процессы непосредственно в клетках.

Гормоны – это биологически активные органические вещества, вырабатываемые в организме определенными клеточными группами или железами и оказывающие регулирующее влияние на процессы обмена веществ и функционирование органов и тканей. Термин «гормон» был введен в1905 году Старлингом при изучении механизма действия секретина. Слово «гормон» – греческого происхождения и означает поощряю, побуждаю, возбуждаю. Выработка почти всех гормонов происходит в хорошо отграниченных отдельных железах. Поскольку выработанные гормоны выделяются не через выводные протоки, а поступают через клеточную стенку в кровь, лимфу или тканевый сок, эти железы называют железами внутренней секреции или эндокринными железами, а выделение гормонов – внутренней секрецией или инкрецией.

Образование гормонов в клеточных группах происходит в ходе метаболизма и является основной (или одной из основных) их функцией. Если же образующиеся биологически активные вещества являются побочными продуктами жизнедеятельности клеток, специализированных на выполнении какихлибо иных функций, то эти вещества называются парагормонами или гормоноидами.

Гормоны и гормоноиды интегрируют обмен веществ, т.е. регулируют соподчиненность и взаимосвязь протекания различных химических реакций в организме, как в едином целом. Само возникновение гормонов и гормоноидов в процессе эволюции живой материи, несомненно, связано с её дифференциацией, с обособлением тканей и органов, деятельность которых должна была

310 15. Интеграция и регуляция обмена веществ. Гормоны

быть тонко скоординирована с тем, чтобы они стали единым организмом. Самая простая форма этой координации заключается в том, что продукты обмена, образующиеся в результате повышенной деятельности одного типа клеток, влияют на деятельность другого рода клеток, усиливая или ослабляя их функции. Продукты обмена, а также гормоноиды при этом распространяются от клетки к клетке преимущественно путем диффузии. Это и имеет место у простейших организмов. На более высоком уровне развития организмов появляется гормональная регуляция, отличающаяся от упомянутой выше тем, что на этой ступени развития уже дифференцируются такие клетки, специализированная функция которых заключается именно в выработке веществ, служащих для регуляции деятельности других клеток и органов. Эти вещества, получившие название гормонов, транспортируются к регулируемым клеткам и органам преимущественно через кровоток.

На высоком уровне развития органов наряду с гормональной регуляцией, являющейся более древней эволюционно, появляются и координирующая деятельность нервной системы. В ходе развития организмов гормональная и нервная регуляция тесно взаимосвязываются в процессе своей деятельности, но нервная система имеет то преимущество, что характеризуется более точной локализацией действия и может быстрее вызвать необходимые функциональные изменения, чем гормональная. Центральная нервная система, анализируя сигналы, идущие из внутренней или наружной среды, в гораздо большей степени может обеспечивать единство организма, чем гормональная регуляция.

Но последняя, присоединяясь к нервной регуляции, имеет для организма то преимущество, что способна воздействовать одновременно на целый ряд различных видов клеток организма и держать под постоянным влиянием соответствующие ткани и органы. По существу, роль эндокринной и нервной систем совпадают, так как их деятельность направлена на обеспечение регулирования и координирования функций организма и сохранение его равновесия(гомеостаза).

Общность нервной и эндокринной систем обуславливается тем, что передача импульсов с нейрона на другой нейрон или на эффектор реализуется -че рез посредство особых биологически активных веществ– медиаторов, а также тем, что некоторым нервным клеткам свойственна нейросекреция, т.е. способность вырабатывать и секретировать продукты метаболизма, обладающие гормональной активностью.

Нейросекреторные клетки совмещают нервную и эндокринную функции, так как способны, с одной стороны, воспринимать нервные импульсы, а с другой стороны – передавать эти импульсы в виде нейрогормонов дальше через кровь. Нейросекреторные клетки у млекопитающих сосредоточены в гипоталамусе, являющемся мозговым центром вегетативных функций организма. При этом одни из нейросекреторных клеток гипоталамуса вырабатывают ней-

15. Интеграция и регуляция обмена веществ. Гормоны 311

рогипофизарные гормоны вазопрессин и окситоцин, которые затем поступают в заднюю долю гипофиза и аккумулируются в ней, выделяясь затем отсюда в кровь. Другие нейросекреторные клетки гипоталамуса продуцируют аденогипофизотропные вещества, так называемые рилизинг-факторы, среди которых различают стимулирующие факторы – либерины и угнетающие факторы – статины, которые активируют или угнетают гормонообразование в передней доле гипофиза. Рилизинг-факторы впервые выделили Гилемин и Шели, установив способность клеток мозга вырабатывать вещества, управляющие работой гипофиза. К числу либеринов относят соматолиберин, кортиколиберин, тиреолиберин, пролактолиберин, фоллилиберин, люлилиберин, а к числу статинов – соматостатин, пролактостатин, меланостатин. Все они являются по химической структуре низкомолекулярными пептидами.

В последние годы из мозга животных выделено более 50 пептидов, получивших название нейропептидов, определяющие в известной степени поведенческие реакции. Показано, что эти вещества влияют на некоторые формы поведения, на процессы обучения и запоминания, регулируют сон, подобно морфину устраняют боль. В качестве примера может быть назван b -эндорфин (обезболивающее действие), скотофобин (вызывает страх перед темнотой) и др. Ряд пептидов, оказывающих фармакологический эффект, получен синтетическим путем (брадикинин, нейрогипофизарный гормон окситоцин, соматостатин и др.). Установлено, что тканевые пептидные гормоны имеют не линейную, а квазициклическую структуру.

Под влиянием рилизинг-факторов в передней доле гипофиза вырабатываются так называемые тропные гормоны, которые активируют деятельность ряда эндокринных желез(щитовидной железы, половых желез, коры надпочечников), непосредственно регулирующих отдельные процессы и функции в организме. Следовательно, если сопоставить функции центральной нервной системы и гормонов, то можно заключить, что роль гормонов по существу состоит в том, что они гуморально передают начальный нервный импульс на конечный эффектор, и, следовательно, гормональная и нервная системы образуют единую систему регуляции жизнедеятельности организма.

При патологических состояниях, вызванных заболеванием эндокринных желез, нейро-гормональная регуляция биохимических процессов оказывается нарушенной, что приводит к резкому понижению способности организма противостоять действию повреждающих факторов. В большинстве случаев эти заболевания есть следствие либо гипофункции эндокринной железы(т.е. недостаточного образования гормона), либо ее гиперфункции (т.е. избыточного выделения гормона). При этом нарушение функции одной эндокринной железы не происходит изолированно, так как отдельные эндокринные железы оказывают своими секретами мощное влияние не только на различные органы и ткани организма, но и на функцию других желез внутренней секреции и на

312 15. Интеграция и регуляция обмена веществ. Гормоны

нервную систему. В этой связи заболевание, вначале вызванное изменением функции той или иной эндокринной железы, в последующем в большинстве случаев отражает нарушение деятельности ряда желез.

Нарушение гормонообразования может обусловливаться не только действием внешних факторов, вызывающих патологическое состояние эндокринных желез, но и эндогенными причинами. К числу этих причин следует отнести: прекращение или искажение активирующих и регулирующих импульсов, посылаемых прямо или опосредованно нервной системой; форму выделения и циркуляции гормона в крови– в доступной или недоступной для эффектора (связывание гормонов белками плазмы крови и пр.); степень реактивности регулируемых систем к гормонам.

В связи с тесной взаимосвязью эндокринной и нервной систем существенное значение для направленного воздействия на функции эндокринных желез приобрели средства, действующие на центральную нервную систему. К примеру, резерпин способен высвобождать катехоламины, являющиеся гормональными веществами, из окончаний симпатических нервов и тем менять функциональное состояние организма.

Большое научное и практическое значение имеют вещества, способные тормозить образование и секрецию гормонов или блокировать их физиологическую активность в эффекторных органах(так называемые антигормональные средства). Это открывает возможность медикаментозной терапии заболеваний, которые возникают вследствии избыточной продукции гормонов. Примером таких веществ являются тиоцианиды, производные тиомочевины, мерказолил, аллоксан, дитизон, хлорпроизводные дифенилэтана, аминоглютетимид, флутаминд, нафоксидин и др., обладающие ингибирующим воздействием на гормоны щитовидной железы, инсулярного аппарата поджелудочной железы, коры надпочечников.

В основе молекулярного механизма действия некоторых антигормонов лежит их конкуренция с гормонами за связывание их цитозольных рецепторов. Антигормоны обладают меньшим сродством к рецепторам, чем истинные гормоны, и поэтому оказывают действие при высоких концентрациях. На этом механизме основано действие природных антигормонов, например, эстрогенов

и андрогенов. Эстрагены блокируют андрогенные рецепторы, а андрогены - эстрагонные рецепторы. На этом механизме основано лечебное применение тестостерона и эстрадиола для терапии опухолей половой сферы у лиц противоположного пола. Такие антигормоны используют для лечения гормонозависимых опухолей, при отклонении в половом поведении(например, при гиперсексуальности).

Функциональная активность эндокринной железы находится в равновесии

с концентрацией ее гормонов в циркулирующей крови.

15. Интеграция и регуляция обмена веществ. Гормоны 313

Это равновесие обеспечивается разными путями: активирующим влиянием тропного гормона гипофиза на периферическую эндокринную железу и

действием гормона последней на тропную функцию гипофиза по принципу обратной связи; угнетающим действием гормонов на железу, их продуцирующую; влиянием выделившихся гормонов на высшие отделы центральной нервной системы и через них на функции эндокринных желез; существованием связи между функцией эндокринной железы и некоторыми продуктами ее метаболизма и т.д.

Деятельность некоторых эндокринных желез специализирована исключительно на продукции гормонов(аденогипофиз, щитовидная железа, околощитовидная железы, кора и мозговая часть надпочечников), тогда как другие эндокринные железы сочетают гормонообразование с неэндокринными функциями (поджелудочная железа, половые железы).

Гормоны отличаются друг от друга видом действия и избирательностью воздействия на тот или иной исполнительный орган. Некоторые гормоны, как, например, гормон щитовидной железы, обладают универсальным действием, другие имеют строго ограниченный диапазон действия: например, гормоны паращитовидной железы действуют преимущественно на костную систему и почки. Особый вид гормонов, вырабатываемых гипофизом, несет регулирующую функцию по отношению к другим эндокринным железам(щитовидной железе, надпочечникам и половым железам). Это различные тропные гормоны гипофиза. Благодаря этому гипофиз занимает особое место в системе эндокринных желез, являясь как бы главной, ведущей эндокринной железой. Ряд гормонов, оказывают непосредственное действие на некоторые основные функции организма (обмен веществ, рост, размножение и др.). Среди последних гормоны щитовидной железы обладают катаболическим действием, тогда как соматотропный гормон передней доли гипофиза, инсулин, андрогены – в основном анаболическим действием.

Гормоны надпочечников (глюкокортикоиды и катехоламины) являются «гормонами адаптации», так как повышают сопротивляемость организма к действию повреждающих факторов. Кроме того, глюкокортикоидам свойственно пермиссивное действие, состоящее в повьшении реактивности эффекторов к действию нервных импульсов и других гормонов, что, поддерживая повышенную работоспособность эффекторных клеток, делает возможной их длительную и напряженную работу.

В регуляции основных жизненных функций участвуют, как правило, несколько гормонов. Так, в регуляции углеводного обмена участвуют инсулин, глюкагон, глюкокортикоиды, соматотропный гормон, адреналин, в регуляции минерального обмена – альдостерон, паратиреоидный гормон и тиреокальцитонин, в регуляции водного обмена– алъдостерон и антидиуретический гормон.

    Уровни организации регуляторных систем.

    Роль гормонов в регуляции метаболизма.

    Гормоны мозгового вещества надпочечников, щитовидной, паращитовидной и поджелудочной желез.

Для нормального функционирования многоклеточного организма необходима взаимосвязь между отдельными клетками, тканями и органами. Эту взаимосвязь осуществляют 4 основные системы регуляции.

    Центральная и периферическая нервные системы через нервные импульсы и нейромедиаторы;

    Эндокринная система через эндокринные железы и гормоны, которые секретируются в кровь и влияют на метаболизм различных клеток-мишеней;

    Паракринная и аутокринная системы посредством различных соединений, которые секретируются в межклеточное пространство и взаимодействуют с рецепторами либо близлежащих клеток, либо той же клетки (простагландины, гормоны ЖКТ, гистамин и др.);

    Иммунная система через специфические белки (цитокины, антитела).

Системы регуляции метаболизма. А - эндокринная - гормоны секретируются железами в кровь, транспортируются по кровеносному руслу и связываются с рецепторами клеток-мишеней;

Б - паракринная - гормоны секретируются во внеклеточное пространство и связываются с мембранными рецепторами соседних клеток;

В - аутокринная - гормоны секретируются во внеклеточное пространство и связываются с мембранными рецепторами клетки, секретирующей гормон:

Уровни организации регуляторных систем

3 иерархических уровня.

Первый уровень - ЦНС. Нервные клетки получают сигналы, поступающие из внешней и внутренней среды, преобразуют их в форму нервного импульса и передают через синапсы, используя химические сигналы - медиаторы. Медиаторы вызывают изменения метаболизма в эффекторных клетках.

Второй уровень - эндокринная система. Включает гипоталамус, гипофиз, периферические эндокринные железы (а также отдельные клетки), синтезирующие гормоны и высвобождающие их в кровь при действии соответствующего стимула.

Третий уровень - внутриклеточный. Его составляют изменения метаболизма в пределах клетки или отдельного метаболического пути, происходящие в результате:

- изменения активности ферментов путём активации или ингибирования;

- изменения количества ферментов по механизму индукции или репрессии синтеза белков или изменения скорости их разрушения;

- изменения скорости транспорта веществ через мембраны клеток.

Роль гормонов в регуляции обмена веществ и функций

Интегрирующими регуляторами, связывающими различные регуляторные механизмы и метаболизм в разных органах, являются гормоны. Они функционируют как химические посредники, переносящие сигналы, возникающие в различных органах и ЦНС. Ответная реакция клетки на действие гормона очень разнообразна и определяется как химическим строением гормона, так и типом клетки, на которую направлено действие гормона.

Гормоны (греч. hormao – привожу в движение) – это биологически активные вещества, различные по химической природе, вырабатываемые специализированными органами и тканями (железами внутренней секреции) поступающие непосредственно в кровь и осуществляющие гуморальную регуляцию обмена веществ и функций организма. Для всех гормонов характерна большая специфичность действия.

Гормоноиды – вещества, вырабатываемые в ряде тканей и клеток (не в специализированных органах), подобно гормонам влияющие на обменные процессы и функции организма. Гормоноиды часто оказывают свое действие внутри тех клеток, в которых они образуются, или же они распространяются путем диффузии и действуют вблизи места своего образования, некоторые же гормоноиды попадают и в кровоток. Резких различий между гормонами и гормоноидами нет.

Эндокринная система представляет собой функциональное объединение специализированных для внутренней секреции клеток, тканей и органов. Основной их функцией является синтез и секреция во внутреннюю среду организма (инкреция) молекул гормонов. Таким образом, эндокринная система осуществляет гормональную регуляцию процессов жизнедеятельности. Эндокринной функцией обладают: 1) органы или железы внутренней секреции, 2) эндокринная ткань в органе, функция которого не сводится лишь к внутренней секреции, 3) клетки, обладающие наряду с эндокринной и неэндокринными функциями.

Органы, ткани и клетки с эндокринной функцией

Ткань, клетки

Эндокринные железы

Гипофиз а) Аденогипофиз

Кортикотрофы Гонадотрофы Тиреотрофы Соматотрофы Лактотрофы

Кортикотропин Меланотропин Фоллитропин Лютропин Тиреотропин Соматотропин Пролактин

б) нейрогипофиз

Питуициты

Вазопрессин Окситоцин Эндорфины

Надпочечники а) корковое вещество б) мозговое вещество

Клубочковая зона Пучковая зона Сетчатая зона Хромаффинные клетки

Минералокортикоиды Глюкокортикоиды Половые стероиды Адреналин (Норадреналин) Адреномедуллин

Щитовидная железа

Фолликулярные тиреоциты К-клетки

Трийодтиронин Тетрайодтиронин Кальцитонин

Околощитовидные железы

Главные клетки К-клетки

Паратирин Кальцитонин

Пинеоциты

Мелатонин

Органы с эндокринной тканью

Поджелудочаня железа

Островки Лангерганса альфа-клетки бета-клетки дельта-клетки

Глюкагон Инсулин Соматостатин

Половые железы а) семенники б)яичники

Клетки Лейдига Клетки Сертолли Клетки гранулезы Желтое тело

Тестостерон Эстерогены Ингибин Эстрадиол Эстрон Прогестерон Прогестерон

Органы с инкреторной функцией клеток

Желудочно-кишечный тракт

Эндокринные и энтерохромаффинные клетки желудка и тонкого кишечника

Регуляторные пептиды

Плацента

Синцитиотрофобласт Цитотрофобласт

Хорионический гонадотропин Пролактин Эстриол Прогестерон

Тимоциты

Тимозин, Тимопоэтин, Тимулин

ЮГА Перитубуляерные клетки Канальцы

Ренин Эритропоэтин Кальцитриол

Миоциты предсердий

Атриопептид Соматостатин Ангиотензин-II

Кровеносные сосуды

Эндотелиоциты

Эндотелины NO Гиперполяризующий фактор Простагландины Регуляторы адгезии

Система клеток, способных трансформировать аминокислоты в различные гормоны, и имеющих общее эмбриональное происхождение образует АПУД-систему (около 40 типов клеток, обнаруживаемых в ц.н.с. (гипоталамусе, мозжечке), железах внутренней секреции (гипофизе, шишковидном теле, щитовидной железе, островках поджелудочной железы, надпочечниках, яичниках), в желудочно-кишечном тракте, легких, почках и мочевых путях, параганглиях и плаценте) APUD - аббревиатура, образованная из первых букв англ. слов amines амины, precursor предшественник, uptake усвоение, поглощение, decarboxylation декарбоксилирование; синоним диффузная нейроэндокринная система. Клетки АПУД-системы - апудоциты - способны к синтезу биогенных аминов (катехоламинов, серотонина, гистамина) и физиологически активных пептидов, располагаются диффузно или группами среди клеток других органов. Созданию концепции АПУД-системы способствовало одновременное обнаружение в пептидпродуцирующих эндокринных клетках и нейронах большого числа пептидов, играющих роль нейромедиаторов или секретирующихся в кровоток как нейрогормоны. Было установлено, что биологически активные соединения, вырабатываемые клетками АПУД-системы, выполняют эндокринную, нейрокринную и нейроэндокринную

Особенности гормонов:

- в крови гормоны присутствуют в очень низкой концентрации

(до 10 -12 моля);

- эффект их реализуется через посредников – мессенджеров;

- гормоны меняют активность уже существующих ферментов или усиливают синтез ферментов;

- действие ферментов контролируется ЦНС;

- гормоны и железы внутренней секреции связаны механизмом прямой и обратной связи.

Многие гормоны переносятся по крови не самостоятельно, а с белками плазмы крови – переносчиками. Разрушаются гормоны в печени, а выводятся продукты их разрушения почками.

В органах-мишенях (которых достигают гормоны) на поверхности клеток имеются специфические рецепторы , которые «узнают» свой гормон, иногда эти рецепторы не на клеточной мембране, а на ядре внутри клетки.

Синтезированные гормоны депонируются в соответствующих железах в разных количествах:

Запас стероидных гормонов – хватает на обеспечение организма в течение нескольких часов ,

Запас белково-пептидных гормонов (в форме прогормонов) хватает на

1 сутки,

Запас катехоламинов - на несколько суток ,

Запас тиреоидных гормонов - на несколько недель .

Секреция гормонов в кровь(путем экзоцитоза или диффузии) происходит неравномерно – она носит пульсирующий характер, или наблюдается циркадный ритм. В крови белково-пептидные гормоны и катехоламины обычно находятся в свободном состоянии, стероидные и тиреоидные гормоны связываются со специфическими белками-переносчиками. Период полужизни гормонов в плазме составляет: катехоламинов - секунды, белково-пептидных гормонов - минуты, стероидных гормонов - часы, тиреоидных гормонов - несколько суток. Гормоны воздействуют на клетки-мишени, взаимодействуя с рецепторами, их отделение от рецепторов происходит через десятки секунд или минуты. Все гормоны в конечном счете разрушаются, частично в клетках-мишенях, особенно интенсивно - в печени. Выделяются из организма главным образом метаболиты гормонов, неизмененные гормоны - в очень малых количествах. Основной путь их выведения - через почки с мочой.

Физиологический эффект гормона определяется разными факторами, например:

    концентрацией гормона (которая определяется скоростью инактивации в результате распада гормонов, протекающего в основном в печени, и скоростью выведения гормонов и его метаболитов из организма),

    сродством к белкам-переносчикам (стероидные и тиреоидные гормоны транспортируются по кровеносному руслу в комплексе с белками),

    количеством и типом рецепторов на поверхности клеток-мишеней.

Синтез и секреция гормонов стимулируются внешними и внутренними сигналами, поступающими в ЦНС .

Эти сигналы по нейронам поступают в гипоталамус, где стимулируют синтез пептидных рилизинг-гормонов (от англ, release - освобождать) -либеринов и статинов .

Либерины стимулируют, а статины ингибируют синтез и секрецию гормонов передней доли гипофиза.

Гормоны передней доли гипофиза, называемые тропными гормонами , стимулируют образование и секрецию гормонов периферических эндокринных желёз, которые поступают в общий кровоток и взаимодействуют с клетками-мишенями.

Схема взаимосвязи регуляторных систем организма . 1 - синтез и секреция гормонов стимулируется внешними и внутренними сигналами; 2 - сигналы по нейронам поступают в гипоталамус, где стимулируют синтез и секрецию рилизинг-гормо-нов; 3 - рилизинг-гормоны стимулируют (либерины) или ингибируют (статины) синтез и секрецию тройных гормонов.гипофиза; 4 - тройные гормоны стимулируют синтез и секрецию гормонов периферических эндокринных желез; 5 - гормоны эндокринных желез поступают в кровоток и взаимодействуют с клетками-мишенями; 6 - изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов эндокринных желез и гипоталамуса; 7 - синтез и секреция тройных гормонов подавляется гормонами эндокринных желез; ⊕ - стимуляция синтеза и секреции гормонов; ⊝ - подавление синтеза и секреции гормонов (отрицательная обратная связь).

Поддержание уровня гормонов в организме обеспечивает механизм отрицательной обратной связи. Изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов, действуя либо на эндокринные железы, либо на гипоталамус . Синтез и секреция тропных гормонов подавляется гормонами эндокринных периферических желёз . Такие петли обратной связи действуют в системах регуляции гормонов надпочечников, щитовидной железы, половых желёз.

Не все эндокринные железы регулируются подобным образом:

Гормоны задней доли гипофиза - вазопрессин и окситоцин - синтезируются в гипоталамусе в виде предшественников и хранятся в гранулах терминальных аксонов нейрогипофиза;

Секреция гормонов поджелудочной железы (инсулина и глюкагона) напрямую зависит от концентрации глюкозы в крови.

В регуляции межклеточных взаимодействий участвуют также низкомолекулярные белковые соединения - цитокины . Влияние цитокинов на различные функции клеток обусловлено их взаимодействием с мембранными рецепторами. Через образование внутриклеточных посредников сигналы передаются в ядро , где происходят активация определённых генов и индукция синтеза белков. Все цитокины объединяются следующими общими свойствами:

    синтезируются в процессе иммунного ответа организма, служат медиаторами иммунной и воспалительной реакций и обладают в основном аутокринной, в некоторых случаях паракринной и эндокринной активностью;

    действуют как факторы роста и факторы дифференцировки клеток (при этом вызывают преимущественно медленные клеточные реакции, требующие синтеза новых белков);

    обладают плейотропной (полифункциональной) активностью.

 

Возможно, будет полезно почитать: