Лекарственные препараты на основе олигонуклеотидов. Биотехнология и лекарственные средства Местное введение АСО

Перспективным направлением является развитие генных технологий.

1. Они способны существенно оптимизировать традиционную фармакотерапию (фармакогеномика).

2. Особые надежды возлагаются на генно-инженерные разработки препаратов для защиты от инфекционных болезней и патогенов.

Еще одно направление - биотехнологические препараты. Начинается конкуренция между традиционными синтетическими лекарственными средствами и биофармацевтическими препаратами. Становится привычным новый термин «биофармация».

В 2006 году объем мирового фармарынка составлял примерно 640 млрд. долл., при этом 10% уже приходилось на долю биотехнологических продуктов. Лидерами в области биофармации являются США и Германия.

Разработке современных биофармацевтических препаратов предшествовало освоение других биотехнологических методов, в частности ферментации бактерий и грибов, что позволило развить промышленное производство низкомолекулярных лекарственных средств, например антибиотиков, ингибиторов ГМГ-КоА-редуктазы (гидрокси-метилглутарил-коферментаА-редуктаза) и иммуносупрессоров. Биотехнологические лекарственные средства - это лекарственные препараты, предназначенные для профилактики, лечения или диагностики in vivo, которые развивают не фармакологическую, а биологическую активность. Они обладают рядом существенных отличий от химико-синтетических лекарственных средств. Действующее вещество биотехнологических препаратов имеет биологическое происхождение и является производным от живых клеток, обладает сложной гетерогенной молекулярной структурой. Исходным субстратом служат клетки животного происхождения или микроорганизмы (бактерии типа E.coli, дрожжи и пр.), используются их клеточные и субклеточные структуры.

Существенным отличием биотехнологических лекарственных средств является то, что в них используется естественная способность к метаболизму.

Для их получения производится изоляция и изменение геномной ДНК исходного продукта таким образом, что он получает новую, неспецифическую для данного вида способность к биосинтезу, которая и используется в лекарственных средствах. В первую очередь здесь следует назвать создание генномодифицированных организмов для получения рекомбинантных терапевтических протеинов. В настоящее время уже используется 115 лекарственных средств на основе 84 терапевтических протеинов. В 2006 г. в США в разработке находилось 418 биофармацевтических лекарственных средств, в Европе - 320. Часть из них уже проходят клинические исследования и скоро станут доступными врачам и их пациентам. По оптимистическим прогнозам, в 2015 г. половина инновационных лекарственных средств в мире будут основаны на протеинах или олигонуклеотидах. Следует также ожидать выхода на фармрынок новой категории лекарственных средств - биосимиляров - аналогов оригинальных биотехнологических лекарственных средств со сходной, но неидентичной активной молекулой. В ЕС в этом году зарегистрированы два первых биосимиляра (гормона роста - соматотропина). На регистрации в European Medicines Agency находятся порядка 12 биосимиляров (эритропоэтин и др.). Ожидается, что введение в медицинскую практику биосимиляров резко снизит затраты здравоохранения на биотехнологические лекарственные средства, сделает их доступными для широких слоев населения. В руках у врачей окажутся еще более эффективные препараты для борьбы с серьезными заболеваниями, многие из которых раньше считались неизлечимыми.

«Антисмысловая» РНК (Antisense RNA), которую предполагает­ся использовать в качестве лекарственного сред­ства, представляет собой короткий (15-20-нуклеотидов) олигонуклеотид, который может связываться с комплементарным ей определенным участком мРНК и ингибировать трансляцию кодируемого ей белка, подавляя тем самым патологический процесс (рис.2).

Терапевтический эффект синтетических «анти­смысловых» олигонуклео-тидов зависит от спе­цифичности их гибридизации с доступным сайтом мРНК-мишени, устойчивости к дейст­вию клеточных нуклеаз и наличия системы доставки в клетку. 15-20-нуклеотидные последо­вательности гибридизуются с уникальными мРНК с достаточно высокой специфичностью. Потенциальные сайты-мишени определяют тес­тированием набора «антисмысловых» олигону­клеотидов с использованием культуры клеток, синтезирующих мРНК-мишень. Для этого про­водят электрофоретическое разделение клеточ­ных белков, в которые включают радиоактив­ную метку во время трансляции, и с помощью радиоавтографии устанавливают, в присутст­вии какого из «антисмысловых» олигонуклеотидов снижается синтез определенного белка. Никаких общих критериев выбора наилучших сайтов-мишеней в разных РНК-транскриптах не существует. Эффективными могут оказаться олигонуклеотиды, комплементарные 5"- или 3"-концам мРНК, границам экзонов и интронов и даже двухцепочечным областям. Антисмысловые олигонуклеотиды могут разрушаться внутрикле­точными нуклеазами, поэтому важно защитить их от действия последних так, чтобы они не утра­тили способности к гибридизации с мишенью. Для этого можно модифицировать определен­ным образом пиримидиновые основания, рибозу или дезоксирибозу (рис.3). Так, у наиболее ши­роко применяющихся сейчас «антисмысловых» олигонуклеотидов свободный атом кислорода фосфодиэфирной связи заменен на группу SH (рис. 3Б), в результате чего образу­ется тиофосфатная связь. Модифицированные таким образом олигонуклеотиды растворяются в воде, несут отрицательный заряд и не расщеп­ляются под действием эндонуклеаз. При гиб­ридизации с сайтом-мишенью они образуют дуплексы, которые активируют рибонуклеазу (РНКазу), эндогенный фермент, расщепляющий мРНК в такой гибридной молекуле. Проведены первые клинические испытания та­ких олигонуклеотидов - лекарственных средств «первого поколения». Мишенями являются РНК цитомегаловируса, вируса иммунодефици­та человека, а также мРНК генов, ответственных за развитие рака, болезней кишечника и других заболеваний.

Синтезированы «антисмысловые» олигонук­леотиды с фосфорамидитной и полиамидной (пептидной) связями - пептидные нуклеиновые кислоты (Peptide nucleicacids, PNAs) (рис.3В и Г ). Такие молекулы очень устойчивы к действию нуклеаз. Химические группы, присоединенные к 2"-угле­родному атому сахарного остатка и С-5-атому пиримидинов, также защищают «антисмысло­вые» олигонуклеотиды и облегчают их связыва­ние с сайтом-мишенью (рис. 32Д и Е ). Все преимущества этих и других модификаций сей­час интенсивно изучаются.

Проникновение «антисмыловых» олигонук­леотидов в клетку можно значительно облег­чить, поместив их в липосомы. Такая высокоэффективная система доставки позволяет ис­пользовать «антисмысловые» олигонуклеотиды в небольших концентрациях. Если же конъюгировать липосомы с антителами, специфичными к эпитопам определенных клеток тех или иных органов, то можно будет осуществлять адресную доставку «антисмысловых» олигонуклеотидов.

Проведенные доклинические испытания оказали, что «антисмысловые» олигонуклеотиды являются весьма эффективными лекартвенными средствами. Изучена возможность их применения для лечения стеноза коронарых и сонных артерий, который приводит к инфарктам и инсультам. В этих случаях часто прибегают к ангиопластике, расширению артерий с помощью баллонного катетера, но примерно у 40% больных через 6 месяцев вновь возникают стенозы, поскольку ангиопластика стимулирует пролиферацию гладкомышечных клеток и секрецию межклеточного вещества во внутренний слой артерии в месте ее расширения. В одном из экспериментов в сонные артерии крыс после ангиопластики вводили антисмысловые» олигонуклеотиды с тиофосфатными связями, комплементарные мРНК, которые кодируют важные для клеточного циклa млекопитающих белки; в результате частота повторных стенозов уменьшилась на 90%. Пролиферация гладкомышечных клеток про­исходит также при атеросклерозе, сахарном диабете, осложнениях после коронарного шунтирования. Вероятно, все эти состояния можно будет контролировать аналогичными способами.

«Антисмыловые» олигонуклеотиды можно применять и для лечения вирусных инфекций и малярии. Кроме того, результаты I фазы клини­ческих испытаний лечения болезни Крона с по­мощью орального введения «антисмыслового» олигонуклеотида проиллюстрировали четко вы­раженный терапевтический эффект без замет­ных побочных эффектов. В этом случае мРНК-мишень кодировала межклеточный адгезии типа 1, который вырабатывается в избытке у па­циентов с болезнью Крона. Предполагается ис­следовать эффективность этого же олигонукле­отида для терапии других воспалительных заболеваний, например ревматоидного артрита, псориаза и язвенного колита.

В принципе «антисмысловые» олигонуклео­тиды могут образовывать тройную спираль с хромосомной ДНК-мишенью и блокировать транскрипцию. Однако пока специфичность «антигенных» олигонуклеотидов не соответст­вует стандартам, принятым для лекарственных средств.

Лекарство для генов

Давняя мечта медиков - иметь в своем распоряжении вещества, которые действовали бы на конкретные гены, т.е. на первопричину многих болезней. Ведь на основе таких веществ можно создавать лекарственные препараты - настоящие «волшебные пули», способные поражать наследственный материал различных инфекционных агентов, не принося вреда организму человека, а также подавлять активность онкогенов, ответственных за злокачественный рост клеток. Создание подобных веществ, направленно воздействующих на генетический материал, - одна из главных задач молекулярной биологии, поскольку с их помощью можно исследовать функции генов и, в конечном счете, управлять работой последних

Но каким образом можно изменить нужную генетическую программу? Ведь все гены имеют сходные химический состав и структуру: различия между ними сводятся лишь к порядку чередования четырех мономерных блоков - нуклеотидов A, T, G, C. Для того чтобы воздействовать на определенный ген, молекула вещества должна каким-то образом распознать эту нуклеотидную последовательность - задача, на первый взгляд, неразрешимая.

Но группа сибирских химиков, приехавших в Новосибирский академгородок в первые годы его создания, считала иначе. Сотрудники Института органической химии СО АН СССР (Новосибирск) Н. И. Гринева и Д. Г. Кнорре на основе принципа молекулярного узнавания, используемого самой природой, сформулировали идею направленного воздействия на гены с помощью олигонуклеотидов - фрагментов нуклеиновых кислот, «вооруженных» специальными химическими группами. Первую работу по олигонуклеотидам сибирские химики опубликовали в 1967 г. - именно эта дата и считается сегодня официальной датой возни­кновения нового направления в молекулярной биологии и фармакологии.

Они были первыми

Осуществление этого необычного по смелости проек­та (в то время нигде в мире даже не планировалось проведение подобных исследований) на начальной стадии велось небольшой группой молодых сотрудников, аспирантов и студентов НГУ. Начинать пришлось практически с нуля, поскольку тогда еще не умели синтезировать олигонуклеотиды в заметных количествах; не существовало технических приборов, необходимых для работы с малыми количествами нуклеиновых кислот и эффективной методики определения их последовательности. Решить эти проблемы нашим химикам удалось благодаря междисциплинарности - одному из принципов, легших в основу деятельности Сибирского отделения.

В НИОХ было организовано производство нуклеиновых кислот, разработаны методы их химической модификации; совместно с сотрудниками Института ядерной физики удалось создать приборы для анализа нуклеиновых кислот и манипуляции с их малыми количествами, а совместно с химиками МГУ - развернуть работы по созданию автоматических синтезаторов олигонуклеотидов. В результате в распоряжении ученых оказались практически все необходимые аналитические методы и приборы - биологические исследования можно было начинать.

Эксперименты, проведенные сначала на простых моделях, а затем на природных нуклеиновых кислотах, показали, что олигонуклеотиды действительно взаимодействуют с нуклеиновыми кислотами - мишенями с высокой степенью избирательности. В том случае, когда к олигонуклеотидам присоединены реакционно-способные группы, происходит направленная химическая модификация мишеней - нуклеиновых кислот. К тому же, впервые было продемонстрировано, что с помощью этих реагентов можно подавить вирусные инфекции у животных, а также доказана возможность введения их в организм через кожу и слизистые оболочки и т. п.

Ранние публикации, посвященные биологическим эффектам, производимым олигонуклеотидами, вызвали огромный интерес специалистов во всем мире. В 1988 г. в Академгородке был проведен первый в мире симпозиум по ген-направленным веществам на основе фрагментов нуклеиновых кислот. В работу по созданию подобных препаратов включились ученые США, Франции, а затем и других стран; возникли десятки компаний, поставивших перед собой цель создать терапевтические препараты на основе олигонуклеотидов.

Комплементарное лекарство

Первыми из препаратов ген-направленного действия стали так называемые антисмысловые олигонуклеотиды, предназначенные для избирательной инактивации вирусных РНК и некоторых клеточных РНК. Изначально предполагалось, что к этим олигонуклеотидам будут присоединены реакционно-способные группы, которые должны химически модифицировать или разрушать целевые нуклеиновые кислоты. Однако выяснилось, что присоединение олигонуклеотидов к РНК-мишени само по себе оказывает на нее настолько большое влияние, что может провоцировать ее разрушение клеточными ферментами.

Д. Г. КНОРРЕ - академик РАН, специалист в области химической кинетики, молекулярной биологии и биоорганической химии. Заведующий лабораторией химии природных полимеров (1960-1984 гг.), отделом биохимии и лабораторией химии нуклеиновых кислот (1970-1984 гг.) Института органической химии СО АН СССР, директор Института биоорганической химии СО АН СССР и СО РАН (1984-1996 гг.) Антисмысловые подходы, основанные на использовании нуклеотидов и нуклеиновых кислот для подавления биологической активности нуклеиновых кислот, сулят интересные перспективы в тех случаях, когда нужно задавить реализацию нежелательной информации в живых организмах. В первую очередь открывается перспектива создания нового поколения противовирусных и противоопухолевых препаратов. Такие препараты имеют одно неоспоримое преимущество перед другими… Все олигонуклеотиды независимо от мишени, на которую они нацелены, могут быть созданы по единой технологии. Варьировать нужно только последовательность нуклеотидов. В частно­сти, в вирусологии и онкологии часто приходится сталкиваться с таким явлением, как возникновение устойчивости к препаратам. Это происходит чаще всего потому, что у отдельной вирусной частицы или отдельной раковой клетки происходит мутация, приводящая к такой устойчивости. В любом другом случае нужно начинать эмпирический поиск нового лекарственного препарата. В случае антисмысло­вых воздействий нужно только определить, какое изменение в структуре вирусного генома или онкогена привело к появлению устойчивости. После чего сразу становится ясным, как по той же единой технологии создавать новый препарат *.

* Соросовский образовательный журнал. - 1998. - 12. - C. 25-31.

Самым мощным средством «выключения» генов оказались интерферирующие РНК - короткие двуцепочечные комплексы из РНК-олигонуклеотидов. Когда такой комплекс вводят в клетку, одна из цепочек связывается с комплементарной ей последовательностью в информационной РНК клетки. Это служит сигналом к началу работы группы ферментов, которые разрезают РНК, связанную с олигонуклеотидами. В результате программа синтеза определенного белка исчезает.

В 2006 г. за объяснение действия механизма РНК-интерференции два американских исследователя были удостоены Нобелевской премии по физиологии и медицине. Создание регуляторов экспрессии генов на основе интерферирующих РНК открыло большие возможности для получения широкого спектра высокоэффективных нетоксичных препаратов, подавляющих экспрессию практически всех, в том числе опухолевых и вирусных, генов.

Правильные мутации

Внимание специалистов давно привлекают и методы мутагенного воздействия на ДНК с помощью олигону­клеотидов или их производных. В случае успеха может стать реальным то, что сегодня кажется фантастикой: коррекция дефектных генетических программ.

Экспериментально уже доказано, что с помощью коротких олигонуклеотидов можно вносить в генетические программы точечные мутации. Как это осуще­ствить? Мутагенные олигонуклеотиды, содержащие «неправильные» нуклеотидные блоки, вводятся в клетку, где они соединяются с ДНК. В результате в некоторых участках нуклеотидных последовательностей появляются «неправильные», т. е. некомплементарные, пары оснований, что и воспринимается клеточной системой репарации («ремонта») ДНК как повреждение. Нуклеотиды в подобной паре заменяются репаративными ферментами таким образом, чтобы она стала «правильной», комплементарной. При этом замена может происходить как в олигонуклеотидной последовательности, так и в самой клеточной ДНК.

В последнем случае мы имеем дело с изменением генетической программы, т. е. с мутацией. И хотя эффективность подобного мутационного процесса в целом невелика, он может быть использован применительно к новым клеточным технологиям. Например, стволовые клетки больного с каким-либо наследственным нарушением можно обработать избирательным мутагеном, а затем отобрать те из них, в которых произошла нужная мутация (т. е. клетки с «исправленной» генетической программой), размножить и ввести в организм.

1967 г. Опубликована первая работа по олигонуклеотидам - ген-направленным биологически активным веществам

Таким образом, существующие на сегодняшний день олигонуклеотиды способны регулировать «работу» генов на различных уровнях. Так, вышеупомянутые антисмысловые олигонуклеотиды и интерферирующие РНК работают на стадии синтеза белка, воздействуя на матричные РНК - информационные молекулы, в которых происходит сборка полипептидных цепочек. Антигенные олигонуклеотиды, образующие комплексы с ДНК, подавляют экспрессию генов - образование самих матричных РНК, а олигонуклеотиды-аптамеры могут, подобно антителам, образовывать связи с определенными белками, блокируя их. Кроме того, некоторые олигонуклеотиды способны стимулировать работу иммунной системы - сегодня их используют в качестве компонентов вакцин.

В настоящее время разработку и синтез олигонуклеотидов и их аналогов ведут большие исследовательский и индустриальный секторы. Так, в прошлом году только объем рынка олигонуклеотидов, предназначенных для исследовательских целей, превысил 800 млн долларов! Сейчас разработаны и синтезированы десятки новых видов химически модифицированных олигонуклеотидов, идут испытания ряда противовирусных и противовоспалительных препаратов, полученных на их основе. Исследования подобного рода в России сейчас проводятся в основном в Институте химической биологии и фундаментальной медицины СО РАН, где работают ученики и последователи академика Д. Г. Кнорре.

Вот так плодотворность идеи, возникшей в Сибирском отделении сорок лет назад, была доказана самой жизнью. Используя в качестве базовых структур для создания ген-направленных биологически активных веществ короткие фрагменты нуклеиновых кислот, можно быстро разработать и внедрить в производство специфические лекарственные препараты практически против любого вируса. Для этого необходимо лишь расшифровать нуклеотидную последовательность вирусных генов, что несложно сделать с помощью современных технологий. У этого универсального подхода большое будущее: результаты исследований последних лет, в частности по направленному мутагенезу, позволяют рассчитывать на появление в скором времени эффективных лекарств для борьбы с заболеваниями, до сих пор считающихся неизлечимыми.

Введение

Разработка лекарственных препаратов направленного действия является приоритетной задачей современных молекулярной биологии, биоорганической химии и медицины. В настоящее время существует большое количество работ, отражающих различные подходы для решения этой задачи. По ряду причин наиболее перспективным является подход, основанный на выборе в качестве мишени мРНК патогенного белка и использование свойства комплементарности при взаимодействии нуклеиновых кислот друг с другом. На сегодняшний день работы ведутся в трёх направлениях:

Антисмысловые олигонуклеотиды;

Рибозимы и ДНКзимы;

SiRNA и miRNA.

В основе этих методов лежит использование коротких молекул нуклеиновых кислот (17 - 70 н.) с последовательностью, частично или полностью комплементарной участку мРНК - мишени. Общие принципы действия таких агентов объединяют их и в области возникающих проблем, среди которых наиболее острыми являются доставка в клетку, устойчивость к действию нуклеаз и эффективность взаимодействия с мРНК-мишенью. Химические модификации НК-агентов помогают частично или полностью решить многие из этих проблем и повысить эффективность действия агентов.

Изучение механизмов подавления экспрессии гена, используя комплиментарные взаимодействия требует использования методов анализа, позволяющих однозначно определить антисмысловое действие олигонуклеотидов.

Целью настоящей работы является отработка метода подавления экспрессии гена EGFP в клетках с использованием конъюгатов олигонуклеотида с пиреном.

Модификации антисмысловых олигонуклеотидов (Литературный обзор)

Разработка лекарственных препаратов, позволяющих на уровне гена предотвращать развитие заболеваний, вызванных экспрессией патогенных белков (вирусные, продукты онкогенов) или белков, препятствующих его излечению (MDR), привела к появлению и развитию антисенс-технологии. Принцип антисенс-технологии просто: антисмысловые олигорибонуклеотиды вызывают подавление экспрессии гена-мишени сиквенс-специфическим образом, используя способность олигонуклеотидов гибридизоваться с мРНК-мишенью посредством Уотсон-Криковских взаимодействий. Олигонуклеотид, связываясь с РНК-мишенью, препятствует её дальнейшему процессингу . Эксперименты на клеточных культурах показали, что использование олигодезоксирибонуклеотидов (далее ODN) длиной 20 - 30 н., комплиментарных участку мРНК значительно снижает уровень экспрессии кодируемого ею белка. Развитие метода показало ряд причин, приводящих к снижению эффективности ODN: короткое время жизни ODN в сыворотке, низкая эффективность проникновения (транспорта) в клетку и недостаточная эффективность связывания со структурированными фрагментами РНК.

Развитие органической химии, в частности, химии нуклеиновых кислот, позволяет искать пути решения возникающих проблем внесением различных химических модификаций ODN. Химической модификации могут подвергаться как азотистые основания, так и сахаро-фосфатный остов, что приводит к повышению его нуклеазоустойчивости ODN и эффективности его связывания с комплементарной последовательностью. Повышение эффективности доставки ODN в клетку пытаются решить введением в его состав по одному из концов различных групп, облегчающих прохождение через мембрану .

В основном выделяют два механизма действия антисмысловых олигонуклеотидов: арест трансляции за счёт связывания регуляторной области и расщепление РНК в составе РНК-ДНК-гетеродуплекса. Ведение модификаций может оказывать различное влияние по тому или другому механизму, что следует учитывать при выборе варианта модификации .

1.1 Механизм действия антисмысловых олигонуклеотидов

При взаимодействии антисмыслового олигонуклеотида с мРНК происходят два события: стерическое блокирование и расщепление мРНК-мишени РНКазой H. Для одних олигонуклеотидов происходят оба события (РНКаза H-компетентные олигонуклеотиды), для других - только стерическое блокирование (РНКаза H-независимые). Эти два варианта основаны на различных клеточных механизмах. Наиболее широкий спектр молекулярных механизмов затрачивается при использовании второго варианта. Это достигается адресацией олигонуклеотидов к определённым регуляторным последовательностям, как в пре-мРНК, так и в мРНК. В случае пре-мРНК адресация ODN к граничной области между интроном и экзоном нарушает сплайсинг, что приводит либо к его остановке, либо к образованию мРНК, кодирующей нефункциональный белок (см. рис.1). Другим перспективным участком связывания ODN в пре-мРНК является 5"-концевой регион. Взаимодействие ODN с этим регионом приводит к блокированию кепирования .

При взаимодействии ODN с мРНК происходит нарушение её трансляции, а следовательно и синтеза белка за счёт блокирования движения рибосомы по мРНК или даже её сборки в зависимости от положения сайта связывания .

Рис.1.

РНКаза H-компетентные ODN могут быть адресованы к любому участку пре-мРНК и мРНК, так как их действие основано на активации РНКазы H, субстратом которой является РНК в составе дуплексов РНК - ДНК. Однако многие химически модифицированные антисмысловые олигонуклеотиды неспособны включать этот механизм ввиду высокой стерической специфичности РНКазы H. Это связано с тем, что большинство модификаций приводит к изменению параметров спирали дуплекса ODN - РНК, и они перестают быть субстратами для РНКазы H.

Антисмысловые олигонуклеотиды второго поколения - модифицированные по 2"-положению остатка сахара, не являются субстратами РНКазы Н, поэтому нужно искать другие расщепляющие агенты (искусственные РНКазы). Ряд малых молекул (интеркаляторы, поликатионы) способны расщеплять РНК-мишень. Прикрепление к олигонуклеотидам реакционноспособных групп приводит к расщеплению желаемых участков РНК-мишени. Такие группы - это комплексы металлов, амины, олигопептиды и молекулярные конструкциями с группами активного центра нуклеаз (имидазольное кольцо, COO - -, NH 2 -группы, гуанидин) .

1.2 Модификации антисмысловых олигонуклеотидов

1.2.1 Стратегии развития химических модификаций олигонуклеотидов

На основе накопленных данных по применению антисмысловых олигонуклеотидов был сформулирован ряд критериев, которым должен удовлетворять ODN, чтобы быть эффективным терапевтическим агентом :

· устойчивость к нуклеазам

· высокая аффинность к мишени

· формирование субстрата РНКазы H

· различные механизмы действия (влияние альтернативный сплайсинг, арест трансляции)

· нетоксичность и специфичность

· возможность неспецифического связывания с белками для транспорта

· лёгкость синтеза, патентабельность, выгода

Нативные ODN не способны полностью удовлетворять всем перечисленным критериям. Основными ограничениями выступают слабая нуклеазная устойчивость и недостаточно стабильные комплексы ODN - РНК. Введение химических модификаций в ODN по всем или отдельно взятым нуклеотидам позволяют в значительной степени устранить имеющиеся недостатки. Модификации ODN проводят по фосфатной группе, остатку сахарозы, азотистому основанию или по концевым фосфатным остаткам. Для повышения нуклеазной устойчивости чаще всего проводят модификацию по фосфатной группе и остатку дезоксирибозы . Повышение эффективности связывания получают за счёт модификации азотистых оснований , а также остатка дезоксирибозы . Для повышения эффективности связывания с белками и улучшения транспорта производят конъюгацию с лигандами различной природы . В ряде случаев присоединённые химические конструкции выполняют роль катализаторов фосфодиэфирных связей в РНК .

1.2.2 Модификации фосфатной группы

Расщепление нуклеазами фосфодиэфирных связей в ДНК происходит через эффективное связывание в активном центре и с использованием кислотно-основных свойств фосфатной группы. Один из способов повысить устойчивость связей ODN к действию нуклеаз - изменить электронную конфигурацию фосфатной группы. Для этого один из несвязанных атомов кислорода заменяют атомом другого элемента. Одним из первых в качестве такого элемента использовали серу, в результате чего были получены фосфоротиоаты (модифицированные антисмысловые олигонуклеотиды первого поколения; см. рис. 2, II).


Рис. 2.

Фосфоротиоаты проявили высокую устойчивость к действию нуклеаз, однако такая модификация значительно повысила токсичность ODN .

Заменой несвязанного атома кислорода фосфатной группы метильной группой получают метилфосфонаты (см. рис. 3, III), проявляющие высокую устойчивость к действию нуклеаз. Модификацию часто проводят только по концевым нуклеотидам, что приводит к уменьшению токсичности .

Если заменить атом кислорода фосфата остатком BH 3 - , получаются боранофосфаты. Остаток -BH 3 - изоэлектронен атому кислорода в фосфодиэфирных связях, за счёт чего боранофосфаты сохраняют свой отрицательный заряд, хорошо растворимы в воде и формируют комплексы с РНК-мишенью. Также этот остаток изоэлектронен и изостеричен метильной группе, благодаря чему от них следует ожидать свойства, аналогичные свойствам метилфосфонатов, такие как устойчивость к нуклеазам .


Рис. 3.

1.2.3 Модификации остатка сахара

Модификации фосфодиэфирных связей не оказывают значительного эффекта на стабильность гетеродуплекса ДНК - РНК. Поэтому, кроме модифицированных олигодезоксинуклеотидов, представляют интерес так называемые модифицированные антисмысловые олигонуклеотиды второго поколения - это замещённые по 2"-гидроксильной группе остатка рибозы олигорибонуклеотиды. Такая модификации также повышает устойчивость к действию нуклеаз. Хотя РНК значительно менее устойчивы к воздействию окружающей среды по сравнению с ДНК за счёт наличия 2"-OH-группы, именно модификации по этой группе позволяют получить стабильные продукты, проявляющие меньшую токсичность по сравнению с фосфонатами. Также к модифицированным антисмысловым олигонуклеотидам второго поколения часто относят и олигонуклеотиды с модифицированным остовом не сахарофосфатной природы, например, пептидные нуклеиновые кислоты, также проявляющие нуклеазоустойчивость и образование термодинамически стабильных гибридов с молекулами мРНК-мишени.

Рис.4. Модификации второго поколения: V - 2"-O-алкил-РНК, VI - LNA, VII - Morpholino, VIII - PNA.

Анализ данных по использованию ряда 2"-O-алкильных производных РНК, содержащих от одного до пяти метиленовых звеньев в алкильном радикале, показал, что с увеличением количества метиленовых звеньев возрастает устойчивость модифицированного олигонуклеотида к действию нуклеаз (пентокси > пропокси > метокси > дезокси). Эта зависимость может объясняться стерической недоступностью нуклеотида при присоединении более объемного заместителя. Однако, стерические затруднения, вызванные наличием объёмных заместителей, снижают эффективность образования комплементарных комплексов с мРНК-мишенью, поэтому наибольшего сродства к мишени достигли при использовании малых заместителей . При сравнении физико-химических параметров 2"-O-метилированных фосфоротиоатов (Me-S-ODN), S-DNA и немодифицированной ДНК выяснилось, что температура плавления (T m) гетеродуплексов ДНК - РНК возрастает в следующем порядке: Me-S-ODN - RNA > normal DNA - RNA > S-ODN - RNA . Недостаток данной модификации состоит в том, что РНКаза H не может расщепить мРНК-мишень в РНК - РНК-комплексе. Как следствие этого недостатка, такие олигонуклеотиды являются менее мощными ингибиторами экспрессии генов по сравнению с немодифицированными .

2"-катионные модификации приводят к образованию цвиттер-ионных олигонуклеотидов. Такие олигонуклеотиды, кроме образования более стабильных гетеродуплексов, по сравнению с немодифицированными, обладают большей способностью проникать через биологические мембраны и высокую стабильность к действию нуклеаз вследствие своего заряда. 2?-O-этил]олигонуклеотиды (2"-O-DMAEOE, см. рис 5), благодаря эффекту заряда, образуют гетеродуплексы с РНК-мишенью с температурой плавления на 2 єС больше по сравнению с немодифицированными олигонуклеотидами . Цвиттер-ионные олигонуклеотиды сохраняют РНКаза H-компетентность, если модификации разбросаны по всей длине олигонуклеотида.

Рис. 5. 2"-O-DMAEOE

Конформационно ограниченные «блокированные» нуклеиновые кислоты (Locked Nucleic Acids, LNA) - модифицированные нуклеиновые кислоты, имеющие как минимум один мономер с бициклической фуранозой в качестве сахарного остатка (см. рис. 4, VI). Они обладают большим сродством к комплементарной последовательности (температура плавления дуплекса возрастает на 6 °С при модификации одного нуклеотида ), что является и достоинством (эффективное связывание мишени), и недостатком (образование шпилек). Такое сродство необходимо учитывать при конструировании LNA . Исследования на мышах показали малотоксичность LNA .

Пептидные нуклеиновые кислоты (PNA) - аналоги нуклеиновых кислот, в которых сахарофосфатный остов заменён на псевдопептидный N-(2-аминоэтил)-глициновый полимер. N-конец иминирует 3"-конец олигонуклеотида, а C-конец - его 5"-конец (см. рис. 3, VII). Комплексы PNA - РНК более стабильны, чем комплексы ДНК - ДНК и РНК - РНК. Несмотря на то, что PNA могут связывать мишень как в антипараллельной (по Уотсону - Крику), так и в параллельной (по Хугстину) ориентации, более стабильные комплексы образуются при антипараллельной ориентации PNA. Исследования показали малую токсичность PNA .

Морфолины (см. рис. 3, VIII) - это реагенты, совмещающие стабильность, резистентность к действию нуклеаз, эффективность, активность в течение долгого периода, водорастворимость, высокую специфичность и низкую токсичность. Молекулы имеют нейтральный заряд . Производством морфолинов занимается компания Gene Tools, LLC (http://www.gene-tools.com ).

Для сохранения РНКаза H-компетентности необходимо, чтобы в середине олигонуклеотида был участок хотя бы из 7 дезоксинуклеотидов, поэтому используются «смешанные» антисмысловые олигонуклеотиды, т.е. имеющие разные модификации в разных звеньях (LNA/DNA, LNA/RNA и т.п.). Также в реакционную смесь добавляют соединения, содержащие группы, вызывающие расщепление мРНК-мишени за счёт сходства с активным центром РНКазы H, либо модифицировать не все нуклеотидные звенья (например, только 3"- и 5"-концы). .

Таким образом, основные свойства модифицированных по сахарофосфатному остову антисмысловых олигонуклеотидов можно суммировать в следующей таблице:

Таблица 1. Сравнение модификаций сахарофосфатногого остова.

Модификация

Стабильность к нуклеазам

Сродство к мишени

Активация РНКазы H

Нетоксичность

1.2.4 Модификации азотистых оснований

Эффективного антисмыслового действия бывает трудно достичь только за счёт модификаций сахарофосфатного остова. Модифицированные азотистые основания повышают эффективность действия антисмысловых ODN за счёт увеличения сродства к РНК-мишени (аминоаденозин, G-clamp) и скорости проникновения через плазматическую мембрану (катионные и цвиттер-ионные группы).

При присоединении феноксазина к остатку цитозина получается так называемый G-clamp (см. рис. 6, X), образующий дополнительную водородную связь с остатком гуанина, благодаря чему на 6 - 18 °С увеличивается температура плавления гибрида ODN - РНК. Такая модификация производится обычно по 3"-концу, что не нарушает РНКаза H-компетентность .

При введении аминогруппы в остаток аденина(см. рис. 6, XI) также возрастает сродство к мишени за счёт образования дополнительной водородной связи с остатком тимина .

Рис. 6. Дополнительные водородные связи между С и G clamp (X), между T и A NH2 (XI)

ODN с присоединёнными к остаткам азотистых оснований катионными и цвиттер-ионными группами (например, спермидиновой, рис. 7) за счёт своего положительного заряда не только обладают бьльшим сродством к мишени, но и улучшенной способности к проникновению в клетку и стабильностью к действию нуклеаз .

Рис. 7.

С концевыми азотистыми основаниями для визуализации места расположения ODN в клетке конъюгируют большие флуоресцирующие лиганды, такие как флуоресцеин .

Рис.8.

1.2.5 Присоединение объёмных заместителей

Способность проникать внутрь клетки, минуя клеточную мембрану, - одно из качеств, которое должно присутствовать у эффективного антисмыслового олигонуклеотида. Большинство описанных выше модификаций нуклеотидов в составе ODN не оказывают значительного влияния на транспорт ODN через клеточную мембрану. Существует несколько путей проникновения молекул через плазмалемму, но для ODN важны два: диффузный, или не рецептор-опосредованный, и рецептор-опосредованный. Транспорт по первому варианту затрудняется суммарным отрицательным зарядом ODN и их гидрофильностью. Использование второго пути ограничено недостаточными данными о поверхностных белках мембраны клеток, отвечающих за транспорт нуклеиновых кислот в клетку. Создание конъюгатов ODN с различными химическими группами способствует повышению эффективности транспорта по тому или иному пути в зависимости от типа химической группы и места её присоединения к ODN. На рисунке 9 представлены варианты линкеров, которые используются при получении конъюгатов. Лиганды можно присоединять к азотистым основаниям, концевым фосфатам, фосфодиэфирным (или аналогичным им) связям, а также остаткам сахара. Некоторые типы химических групп позволяют также визуализировать компартментализацию путём детекции флуоресценции. модификация олигонуклеотид антисмысловый реакция


Рис.9.

Частичная и даже полная нейтрализация отрицательного заряда ODN не оказывает существенного эффекта на способность ODN к самопроизвольному транспорту в клетку. Присоединение различных объёмных гидрофобных лигандов, в частности, тех, что изображены на рисунке 9, облегчает транспорт ODN через мембрану.


Рис.10.

Хорошо изучены конъюгаты с холестеролом . Механизм, улучшающий проникновение в клетку за счёт присоединения холестерола, ещё не до конца ясен, хотя, предполагается рецептор-опосредованное включение липопротеидов . Холестероловые конъюгаты образуют мицеллы, что облегчает их транспорт внутрь клетки. Присоединяют остаток холестерола обычно по концевым 5"- и 3"-фосфатам, причём 3"-монохолестерилолигонуклеотиды более эффективны по сравнению с 5"-монохолестерилолигонуклеотиды, а самыми действенными являются 5",3"-бисхолестерилолигонуклеотиды. К примеру, через 6 мин после инъекции в кровь мыши уровень в тканях 3"-мономодифицированных фосфоротиоатиов был в 4 раза, а 5"-моно- и 3",5"-бисмодифицированных - в 7 раз выше по сравнению с немодифицированными фосфоротиоатами .

Используют мономеры с 5"- или/и 3"-холестерилзамещённым фосфатом , олигонуклеотиды с лигандом, конъюгированным с фосфодиэфирной связью перед 3"-концевым нуклеозидом , а также холестериловые дендримеры с остатком лизина в качестве линкера (см. рис. 11) .


Рис.11.

Олигонуклеотиды, конъюгированные с другими гидрофобными молекулами (адамантан, пирен, эйкозановая кислота и др.), были синтезированы и сравнены с холестероловыми. Холестероловые конъюгаты показали оптимальную липофильность, а также хорошую способность к аккумуляции в печени .

Конъюгация с производными пирена, кроме улучшения способности к транспорту, представляет интерес по причине их способности к флюоресценции. Бис-пиренильные производные способны образовывать эксимеры - бимолекулярные комплексы, в которых одна молекула находится в основном состоянии, другая - в возбуждённым. Такие комплексы очень чувствительны к пространственному окружению, по уровню флуоресценции можно судить о том, находится ODN в связанном с РНК-мишенью состоянии или нет :

Рис.12.

Для улучшения эффективности транспорта в клетку используются также пептидные конъюганты. К олигонуклеотидам, в т.ч. PNA, присоединяют пептид, способный переносить через мембрану большие полярные заряженные молекулы . Так, пептид Antennapedia имеет сайты связывания ДНК. PNA с присоединённым пептидом Antennapedia не только эффективно проникает в клетку, но и мигрирует в ядро .


Рис.13.

Присоединение к концам молекул антисмысловых ODN больших плоских интеркалирующих молекул, таких, как акридин (см. рис. 14), представляет интерес в качестве увеличителя эффективности расщепления молекулы РНК-мишени. За счёт интеркаляции локально разрыхляется взаимодействие ODN - РНК. В следствие увеличения расстояния между ДНК и РНК за счёт размеров молекулы интеркалятора образуется «выпетливание» молекулы РНК из двойной спирали гетеродуплекса. Катионы тяжёлых металлов, например Lu 3+ , координированные с атомами азота остатка акридина, катализируют гидролиз РНК без участия РНКазы H, а «выпетливание» как дестабилизирующая структура ускоряет этот процесс .


Рис. 14.

1.3 Физико-химические аспекты взаимодействия олигонуклеотида и РНК-мишени

Эффективность действия антисмысловых олигонуклеотидов количественно характеризуется сродством ODN к мРНК-мишени и эффективной константой расщепления последней.

Сродство ODN к адресуемой ему РНК (или свободная энергия образования гетеродуплекса) описывает стабильность гибрида ДНК - РНК. r G может быть измерена калориметрически , либо рассчитана теоретически . При расчете свободной энергии Гиббса образования гетеродуплекса используется закон Гесса (свободная энергия Гиббса сложной реакции не зависит от её пути) и расчеты энергий образования вторичных и третичных структур по правилу «ближайшего соседа» (nearest neighbor rule) с помощью программы mfold, разработанной Цукером и соавторами. Реакцию можно представить следующим образом:

В этой схеме М, O, H - соответственно мРНК-мишень, антисмысловой ODN и гетеродуплекс ODN - РНК с учётом их вторичной и третичной структуры, М u , O u , H u - соответственно мРНК-мишень, антисмысловой ODN и гетеродуплекс ODN - РНК без учёта их вторичной и третичной структуры, un G (M) , un G (O) , un G (H) - свободные энергии Гиббса укладки их во вторичную и третичную структуру, r G, r G (unfolded) - свободные энергии гибридизации ODN и мРНК в свёрнутом и полностью денатурированном состоянии соответственно.

un G (M) , un G (O) , un G (H) и r G (unfolded) могут быть теоретически рассчитаны. Тогда свободная энергия гибридизации находится по закону Гесса:

Константу равновесия процесса ассощиации гетеродуплекса K 1 можно найти, исходя из рассчитанной свободной энергии Гиббса процесса гибридизации:

Для оценки температуры плавления гетеродуплекса также пользуются правилом «ближайшего соседа» и рассчитывают её с помощью соответствующих программ.

Экспериментально можно найти эффективную константу скорости k eff брутто-реакции превращения мРНК M в условный продукт X (эта условность не влияет на результат кинетических расчетов, но значительно их упрощает):

Эффективная константа скорости брутто-реакции показывает наблюдаемую скорость расщепления мРНК-мишени.

Механизм реакции можно представить следующей схемой:

В этой схеме E - фермент РНКаза H, HE - промежуточный комплекс её с субстратом H, K 1 - константа ассоциации гетеродуплекса, рассчитываемая по формуле (3).

Для данной кинетической схемы можно составить систему кинетических уравнений:

где С A - концентрация вещества A, k i - константа скорости i-й элементарной реакции.

Обычно измеряемым параметром является концентрация мРНК в растворе (исходная C M0 и текущая C M ), поэтому k eff считают относительно к матрице:

Использовав квазистационарное приближение по промежуточному продукту HE и упростив выражение для скорости реакции w с помощью уравнения Михаэлиса - Ментен:

где - константа Михаэиса, можно преобразовать выражение для скорости изменения концентрации гетеродуплекса H:

Найдём выражение для эффективной константы скорости расщепления мРНК-мишени в двух случаях: когда процесс лимитируется связыванием мРНК антисмысловым ODN и лимитируется каталитическим расщеплением мРНК-мишени в составе гетеродуплекса.

Случай 1. Лимитирование гибридизацией.

В этом случае процесс расщепления идёт значительно быстрей, чем гибридизация. Поэтому можно допустить предположение об установлении стационарной концентрации гетеродуплекса H, т.е.:

С другой стороны, легко увидеть (6), что:

То есть, в данном случае выражение для скорости расщепления мРНК совпадает по абсолютному значению с выражением скорости реакции (скорости образования условного продукта Х). Воспользовавшись этим, преобразуем выражение для скорости изменения концентрации олигонуклеотида, мы увидим, что его концентрацию можно считать практически неизменной:

Воспользовавшись выражением (14) и, как следствие, пренебрегая вкладом члена k -1 С H в находим скорость расщепления мРНК в новом виде и выражаем k eff .

Случай 2. Лимитирование каталитическим расщеплением субстрата.

В случае, когда расщепление идёт значительно медленнее образования гетеродуплекса, можно считать, что успевает установиться равновесие.

Равновесной концентрацией гетеродуплекса можно пренебречь по сравнению с константой Михаэлиса в выражении скорости:

Записав выражение константы равновесия K 1 и уравнения материального баланса для М и О, получаем достаточно условий для решения уравнения:

где [ A ] - равновесная концентрация, С А 0 - исходная концентрация вещества.

С учётом (17) и (18), получаем выражения равновесных концентраций H и O:

Подставляя (21) в уравнение Михаэлиса - Ментен (16), получаем модифицированное уравнение скорости реакции:

Подставляя выражения (20), (21) и (22) в (12) и опуская громоздкие промежуточные расчеты, получаем выражение для скорости каталитического расщепления мРНК:

откуда нетрудно найти формулу эффективной константы скорости брутто-процесса:

На пути создания лекарств на основе антисмысловых ODN лежит множество преград: слабая способность к интернализации, неустойчивость к нуклеазам, токсичность и другие. Химические модификации способны устранить многие из этих проблем, но лишь частично, и трудно найти компромисс между достоинствами и недостатками какой-либо модификации. Несмотря на это, многие препараты на основе ODN прошли испытания. Первое лекарство на основе ODN - Vitravene, направленное на борьбу с цитомегаловирусной инфекции у больных СПИДом .

Нуклеотимды -- фосфорные эфиры нуклеозидов, нуклеозидфосфаты. Свободные нуклеотиды, в частности АТФ, цАМФ, АДФ, играют важную роль в энергетических и информационных внутриклеточных процессах, а также являются составляющими частями нуклеиновых кислот и многих коферментов.

Соединения, состоящие из двух нуклеотидовых молекул, называются динуклеотидами , из трёх -- тринуклеотидами , из небольшого числа -- олигонуклеотидами , а из многих -- полинуклеотидами , или нуклеиновыми кислотами .

Морфолино (англ. Morpholino ) -- синтетические олигонуклеотиды, применяемые в молекулярной биологии для изменения экспрессии генов. Антисмысловые олигомерные морфолино используются для блокировки доступа других молекул к специфическим последовательностям нуклеиновых кислот. Морфолиновые олигонуклеотиды блокируют небольшие одноцепочечные участки (около 25 нуклеотидов) на поверхности молекул РНК .

Антисмысловые олигонуклеотиды представляют собой длинные последовательности нуклеотидов ДНК в хромосомах. Если какой-то ген должен экспрессироваться, то запускается процесс транскрипции этого гена, в результате которого синтезируется мРНК.

Терапевтический эффект синтетических антисмысловых олигонуклеотидов зависит от спецефичности их гибридизации с доступным сайтом м РНК-мишени, устойчивости к действию клеточных нуклеаз и наличию системы доставки в клетку .

На сегодняшний день наиболее эффективное адресное направленное выключение активности определённых участков генома осуществляется антисмысловыми олигонуклеотидами (АОН). Стратегия использования АОН основана на уотсон-криковском взаимодействии молекул ДНК с М-РНК-мишеныо. Образование гетеродуплекса ДНК-МРНК приводит к инактивации М-РНК и последующей остановке синтеза белка.

Иными словами, под антисмысловым механизмом подразумевается связывание олигонуклеотида с комплементарным участком целевой РНК и подавление внутриклеточной функции данной РНК.

Однако, эта простая и привлекательная теоретическая модель в действительности оказалась значительно сложнее. Известны три типа антисмысловых молекул: относительно короткие синтетические олигонуклеотиды; антисмысловые РНК, экспрессирующиеся в клетке после трансфекции антисмысловым геном рибозимы, обладающие каталитической активностью .

Создание препаратов на основе антисмысловых олигонуклеотидов - одно из новейших направлений лекарственных разработок. Эта технология дает исследователю возможность направленно воздействовать практически на любой процесс в клетке с высочайшей специфичностью. Если какой-то белок способствует росту раковой клетки, то, используя соответствующий антисмысловой олигонуклеотид, можно сделать так, что этот белок больше никогда не будет синтезироваться в клетке. Антисмысловые олигонуклеотиды настолько специфичны, что воздействие на какой-либо другой белок в клетке практически исключено. Такая специфичность обеспечит ослабление побочных эффектов, зачастую наблюдаемых при традиционных способах лечения рака.

Механизм инактивации до сих пор до конца не ясен. Но, возможно, это связано с тем, что двунитевая РНК нехарактерна для нормальных клеток. Так как сигналом для синтеза каждого белка является одна единственная мРНК, то такой сигнал для определенного белка можно выключить или «нокаутировать» с помощью такой комплементарной последовательности .

Рис.4 Механизм работы антисмыслового олигонуклеотида

Важной проблемой лечения препаратами на основе антисмысловых олигонуклеотидов является разрушение таких лекарственных средств ферментами клеток - нуклеазами. Олигодезоксонуклеотиды разрушаются нуклеазами, поэтому очень важно защитить их от действия последних так, что бы они не утратили способности гибридизации с мишенью. Для этого проводят электрофоретическое разделение клеточных белков, в которые включают радиоактивную метку во время трансляции, и с помощью радиоавтографии устанавливают, в присутствии какого из «антисмысловых» олигонуклеотидов снижается синтез определенного белка. Никаких общих критериев выбора наилучших сайтов-мишеней в разных РНК-транскриптах не существует. Эффективными могут оказаться олигонуклеотиды, комплементарные 5"- или З"-конпам мРНК, границам экзонов и интро- нов и даже двухцепочечным областям. Олиго- дезоксинуклеотиды разрушаются внутриклеточными нуклеазами, поэтому важно защитить их от действия последних так, чтобы они не утратили способности к гибридизации с мишенью. Для этого можно модифицировать определенным образом пиримидиновые основания и де- зоксирибозу .

Так, у наиболее широко применяющихся сейчас «антисмысловых» олигонуклеотидов свободный атом кислорода фосфодиэфирной связи заменен на сульфо- группу, в результате чего образуется тиофосфатная связь. Модифицированные таким образом олигонуклеотиды растворяются в воде, несут отрицательный заряд и не расщепляются под действием эндонуклеаз. При гибридизации с сайтом-мишенью они образуют РНК--ДНК-дуплексы, которые активируют ри- бонуклеазу (РНКазу) Н, эндогенный фермент, расщепляющий мРНК в гибридной молекуле. Проведены первые клинические испытания таких олигонуклеотидов -- лекарственных средств «первого поколения». Мишенями являются РНК цитомегаловируса, вируса иммунодефицита человека, а также мРНК генов, ответственных за развитие рака, болезней кишечника и других заболеваний .

Синтезированы «антисмысловые» олигонуклеотиды с фосфорамидитной и полиамидной (пептидной) связями. Такие молекулы очень устойчивы к действию нуклеаз. Химические группы, присоединенные к 2"-угле- родному атому сахарного остатка и С-5-атому пиримидинов, также защищают «антисмысловые» олигонуклеотиды и облегчают их связывание с сайтом-мишенью). Все преимущества этих и других модификаций сейчас интенсивно изучаются.

 

Возможно, будет полезно почитать: