Факторы роста фибробластов (FGFs). Ламинин и фактор роста фибропластов - это здорово!!! коллаген III типа

К этой группе относится большое семейство мультифункциональных полипептидов со свойствами митогенов; исходно полученное неверное наименование («Fibroblast Growth Factor”) традиционно закрепилось за всей группой.

Основная функция состоит в стимулировании пролиферации и дифференцировки клеток эмбриональной мезодермальной и нейроэктодермальной природы. FGFs играют важную роль в процессах эмбрионального развития клеток, репарации, выживания нейронов, при сердечно-сосудистых патологиях, онкогенезе. К этому семейству относится также Фактор роста кератоцитов (KGF). Благодаря высокой степени связывания с гепарином семейство FGFs именуется также как Heparin-binding Cell Growth Factor family.

Структура. Общая характеристика. Первыми были выделены из гипофиза быка (Gospodarowicz, 1984) и идентифицированы как основной (basic FGF) и кислый (acid FGF) факторы. Они структурированы в комбинации по две полипептидные цепи, включающие 146 (basic FGF) и 140 (acid FGF) аминокислотных остатков; имеют 55% гомологию и МВ, соответственно, 16-24 и 15-18 кДа.

В настоящее время известно, по меньшей мере, 23 представителя семейства FGFs, из которых около 10 экспрессируются в структурах развивающегося мозга; при этом basic FGF (FGF-2) и FGF-15 «рассеяны», тогда как FGF-8 и FGF-17 экспрессируются в специфических зонах эмбрионального мозга.

Кислый Фактор (aFGF, FGF-1) обнаруживается преимущественно в нервной ткани, сетчатке, а также в костной ткани и остеосаркоме. Основной Фактор (bFGF, FGF-2), исследованный значительно больше, выполняет функции в нейрональных структурах (гипоталамус, сетчатка глаз и др.), в секретирующих органах (гипофиз, тимус, кора надпочечников), а также в почках, сердце, печени, клетках крови, многих видах опухолей. Оба фактора обладают хемотаксической активностью и стимулируют рост новых капилляров in vivo и in vitro. FGF-2 стимулирует заживление ран и используется в соответствующей терапии; ему приписывается важная роль в репарации нервных клеток после травмы мозга. На РИС. 3 представлено соотношение лигандов Эпидермального ростового фактора и соответствующих им типов рецепторов, а также их экспрессия в различных типах клеток и тканях взрослых животных и эмбрионов.

Рецепторы FGFs (5 изотипов) идентифицированы во многих тканях, включая раковые клетки молочной железы и карциному почек. Установлено, что генетические мутации трех из четырех FGFRs причастны к наследственным заболеваниям, связанным с развитием скелета. Рецепторы аFGF представляют новый тип тирозинкиназы, и их активация модулируется двухвалентными катионами или пирофосфатом.

Характеристика других представителей семейства FGFs.

FGF-4. Белок с МВ 22 кДа; идентифицирован в опухолевых клетках желудка, толстого кишечника, гепатоцеллюлярной карциноме, саркоме Капози. Имеет 42% гомологии и общие рецепторы с bFGF. В здоровых тканях взрослого организма не экспрессируется, однако, играет роль в регуляции эмбриогенеза; выполняет функцию митогенетического фактора для фибробластов и эндотелиальных клеток, промотируя ангиогенез.

FGF-5. Белок с МВ 27 кДа; имеет 45% гомологии с bFGF; экспрессируется в мозге зародышей и некоторых линиях опухолевых клеток.

FGF-7, или KGF (Фактор роста кератоцитов). Впервые получен из кератиноцитов. Структура на 39 % гомологична bFGF. МВ 22 кДа. Экспрессируется в фибробластах стромы, отсутствует в нормальных глиальных и эпителиальных клетках. Стимулирует пролиферацию и дифференцировку кератиноцитов и других клеток эпителия.

FGF-9. Именуется также как Glial activating Factor (GAF); выделен из культуры клеток глиомы человека, митоген для фибробластов и олигодендроцитов.

МВ 23 кДа.

FGF-10. Получен впервые из эмбриона крысы. Экспрессируется преимущественно в эмбриональных и взрослых клетках легочной ткани; служит митогеном для эпителиальных и эпидермальных клеток (но не для фибробластов). Играет важную роль в мозге, в развитии легких, заживлении ран.

FGF-17. Гепарин-связывающий фактор; преимущественно экспрессируется в мозге эмбрионов. МВ 22,6 кДа.

РИС 3. РЕЦЕПТОРЫ FGF , ИХ ЛИГАНДЫ И ЭКСПРЕССИЯ В ТКАНЯХ

Новая информация о биологических и медицинских аспектах FGFs.

· Как и большинство ростовых факторов, FGFs обнаруживают функциональную связь с другими нейрорегуляторами; установлено, что про - или антиапоптическая роль Фактора некроза опухоли (TNF-α) модулируется FGF-2 (Eves et al. 2001).

· На модели инфаркта мозга, вызываемого окклюзией средней церебральной артерии, исследовалось влияние icv введения bFGF на размеры пораженной зоны и пролиферацию клеток. Basic FGF не влиял на размеры инфаркта мозга, но значительно увеличивал число пролиферирующих клеток (окраска бромдеоксиуридином) (Wada et al. 2003). На модели травматического повреждения мозга у мышей с дефицитом и, наоборот, сверхэкспрессией bFGF установлено, что на отдаленных сроках Фактор стимулировал нейрогенез и защищал нейроны в поврежденной зоне гиппокампа (Yoshimura et al. 2003). FGF-1 (aFGF) положительно влиял на регенерацию дорзальных корешков спинного мозга после их перерезки (Lee et al. 2004).

· Активация допаминергических D2 рецепторов префронтальной коры и гиппокампа влияла на экспрессию гена FGF-2; данные оцениваются с точки зрения возможной роли Фактора в терапии нейродегенеративных заболеваний типа болезни Паркинсона (Fumagalli et al. 2003). На первичной культуре нейронов установлено, что наряду с IGF, FGF-2 тормозил нейротоксичность амилоидного бета-белка, связанную с активацией JNK, NADH-оксидазы и каспаз-9/3. Этот протективный механизм ассоциируется с возможной ролью FGF-2 в терапии болезни Альцгеймера (Tsukamoto et al. 2003).

· В экспериментах на минисвиньях подтверждена возможная роль FGF-2 для улучшения перфузии миокарда в условиях длительного стеноза art. circumflex. Позитивное влияние FGF-2 было документировано в течение 3-месячного применения; эти результаты могут иметь значение для терапии ишемической болезни сердца (Biswas et al. 2004). Эти данные ассоциируются с механизмом ”инженерной” реконструкции васкулярной ткани, в которой FGF-2 способствует пролиферации и синтезу коллагена в обновляемых структурах культуры клеток аорты человека (Fu et al. 2004).

К этой группе относится большое семейство мультифункциональных полипептидов со свойствами митогенов; исходно полученное неверное наименование («Fibroblast Growth Factor”) традиционно закрепилось за всей группой. Основная функция состоит в стимулировании пролиферации и дифференцировки клеток эмбриональной мезодермальной и нейроэктодермальной природы. FGFs играют важную роль в процессах эмбрионального развития клеток, репарации, выживания нейронов, при сердечно-сосудистых патологиях, онкогенезе. К этому семейству относится также Фактор роста кератоцитов (KGF). Благодаря высокой степени связывания с гепарином семейство FGFs именуется также как Heparin-binding Cell Growth Factor family.

Структура. Общая характеристика. Первыми были выделены из гипофиза быка (Gospodarowicz, 1984) и идентифицированы как основной (basic FGF) и кислый (acid FGF) факторы. Они структурированы в комбинации по две полипептидные цепи, включающие 146 (basic FGF) и 140 (acid FGF) аминокислотных остатков; имеют 55% гомологию и МВ, соответственно, 16-24 и 15-18 кДа.

В настоящее время известно, по меньшей мере, 23 представителя семейства FGFs, из которых около 10 экспрессируются в структурах развивающегося мозга; при этом basic FGF (FGF-2) и FGF-15 «рассеяны», тогда как FGF-8 и FGF-17 экспрессируются в специфических зонах эмбрионального мозга.

Кислый Фактор (aFGF, FGF-1) обнаруживается преимущественно в нервной ткани, сетчатке, а также в костной ткани и остеосаркоме. Основной Фактор (bFGF, FGF-2), исследованный значительно больше, выполняет функции в нейрональных структурах (гипоталамус, сетчатка глаз и др.), в секретирующих органах (гипофиз, тимус, кора надпочечников), а также в почках, сердце, печени, клетках крови, многих видах опухолей. Оба фактора обладают хемотаксической активностью и стимулируют рост новых капилляров in vivo и in vitro. FGF-2 стимулирует заживление ран и используется в соответствующей терапии; ему приписывается важная роль в репарации нервных клеток после травмы мозга. На РИС. 3 представлено соотношение лигандов Эпидермального ростового фактора и соответствующих им типов рецепторов, а также их экспрессия в различных типах клеток и тканях взрослых животных и эмбрионов.

Рецепторы FGFs (5 изотипов) идентифицированы во многих тканях, включая раковые клетки молочной железы и карциному почек. Установлено, что генетические мутации трех из четырех FGFRs причастны к наследственным заболеваниям, связанным с развитием скелета. Рецепторы аFGF представляют новый тип тирозинкиназы, и их активация модулируется двухвалентными катионами или пирофосфатом.

Характеристика других представителей семейства FGFs.

FGF-4. Белок с МВ 22 кДа; идентифицирован в опухолевых клетках желудка, толстого кишечника, гепатоцеллюлярной карциноме, саркоме Капози. Имеет 42% гомологии и общие рецепторы с bFGF. В здоровых тканях взрослого организма не экспрессируется, однако, играет роль в регуляции эмбриогенеза; выполняет функцию митогенетического фактора для фибробластов и эндотелиальных клеток, промотируя ангиогенез.

FGF-5. Белок с МВ 27 кДа; имеет 45% гомологии с bFGF; экспрессируется в мозге зародышей и некоторых линиях опухолевых клеток.

FGF-7, или KGF (Фактор роста кератоцитов). Впервые получен из кератиноцитов. Структура на 39 % гомологична bFGF. МВ 22 кДа. Экспрессируется в фибробластах стромы, отсутствует в нормальных глиальных и эпителиальных клетках. Стимулирует пролиферацию и дифференцировку кератиноцитов и других клеток эпителия.

FGF-9. Именуется также как Glial activating Factor (GAF); выделен из культуры клеток глиомы человека, митоген для фибробластов и олигодендроцитов. МВ 23 кДа.

FGF-10. Получен впервые из эмбриона крысы. Экспрессируется преимущественно в эмбриональных и взрослых клетках легочной ткани; служит митогеном для эпителиальных и эпидермальных клеток (но не для фибробластов). Играет важную роль в мозге, в развитии легких, заживлении ран.

FGF-17. Гепарин-связывающий фактор; преимущественно экспрессируется в мозге эмбрионов. МВ 22,6 кДа.

Новая информация о биологических и медицинских аспектах FGFs.

  • · Как и большинство ростовых факторов, FGFs обнаруживают функциональную связь с другими нейрорегуляторами; установлено, что про - или антиапоптическая роль Фактора некроза опухоли (TNF-б) модулируется FGF-2 (Eves et al. 2001).
  • · На модели инфаркта мозга, вызываемого окклюзией средней церебральной артерии, исследовалось влияние icv введения bFGF на размеры пораженной зоны и пролиферацию клеток. Basic FGF не влиял на размеры инфаркта мозга, но значительно увеличивал число пролиферирующих клеток (окраска бромдеоксиуридином) (Wada et al. 2003). На модели травматического повреждения мозга у мышей с дефицитом и, наоборот, сверхэкспрессией bFGF установлено, что на отдаленных сроках Фактор стимулировал нейрогенез и защищал нейроны в поврежденной зоне гиппокампа (Yoshimura et al. 2003). FGF-1 (aFGF) положительно влиял на регенерацию дорзальных корешков спинного мозга после их перерезки (Lee et al. 2004).
  • · Активация допаминергических D2 рецепторов префронтальной коры и гиппокампа влияла на экспрессию гена FGF-2; данные оцениваются с точки зрения возможной роли Фактора в терапии нейродегенеративных заболеваний типа болезни Паркинсона (Fumagalli et al. 2003). На первичной культуре нейронов установлено, что наряду с IGF, FGF-2 тормозил нейротоксичность амилоидного бета-белка, связанную с активацией JNK, NADH-оксидазы и каспаз-9/3. Этот протективный механизм ассоциируется с возможной ролью FGF-2 в терапии болезни Альцгеймера (Tsukamoto et al. 2003).
  • · В экспериментах на минисвиньях подтверждена возможная роль FGF-2 для улучшения перфузии миокарда в условиях длительного стеноза art. circumflex. Позитивное влияние FGF-2 было документировано в течение 3-месячного применения; эти результаты могут иметь значение для терапии ишемической болезни сердца (Biswas et al. 2004). Эти данные ассоциируются с механизмом ”инженерной” реконструкции васкулярной ткани, в которой FGF-2 способствует пролиферации и синтезу коллагена в обновляемых структурах культуры клеток аорты человека (Fu et al. 2004).
  • · FGF-2 стимулирует развитие капилляров, а также морфогенез эндотелиальных клеток, опосредованный активацией рецепторов VEGFR1 и включением с-Akt-модулин/калмодулин- зависимого сигнала (Kanda et al. 2004).

Нарушение минерального обмена при хронической болезни почек (ХБП) способствует развитию гиперпаратиреоза, заболеваний кости и ведет к повышению кардиоваскулярной заболеваемости и летальности. Недавно был открыт фактор роста фибробластов-23 (fibroblast growth factor-23, FGF-23) — белок, состоящий из 251 аминокислоты (молекулярная масса 32 kDa), который секретируется из остеоцитов, главным образом из остеобластов . Этот белок состоит из аминоконцевой последовательности сигнального пептида (остатки 1-24), центральной последовательности (остатки 25-180) и карбоксилконцевой последовательности (остатки 181-251). Период полужизни FGF-23 в циркуляции у здоровых людей составляет 58 мин . FGF-23 проявляет свои биологические эффекты через активацию FGF-рецепторов. FGF1с-рецепторы, связываясь с Kлото (англ. Klotho) белком, становятся в 1000 раз более чувствительными для взаимодействия с FGF-23, чем другие FGF-рецепторы или Клото-белок отдельно. Белок Kлото — это 130 kDa трансмембранный белок, бета-глюкорозонидаза, который был открыт в 1997 г. M. Kuro-o. Белок Клото был назван в честь одной из трех греческих богинь судьбы — Клото, прядущей нить жизни и определяющей ее срок. Было обнаружено, что уровень белка Клото в организме с возрастом существенно снижается. Затем ученые доказали его роль в регуляции механизмов старения. Генетически модифицированные мыши, в организме которых уровень белка Клото был повышен в течение всей жизни, жили на треть дольше своих диких собратьев. Мыши с дефицитом белка Клото быстро старели, и у них стремительно развивался атеросклероз и кальциноз. Белок Клото представляет собой тот редчайший случай в биологии млекопитающих, когда один-единственный белок столь существенным образом влияет на продолжительность жизни и связанные с этим физиологические процессы. Как правило, такие сложные процессы регулируются множеством генов, и роль каждого из них сравнительно невелика.

Роль FGF-23 в метаболизме фосфора

Биологическая активность и физиологическая роль FGF-23 была выяснена только в последнее время. На моделях животных (нокаутных мышах по FGF-23) было показано повышение реабсорбции фосфора (Р) и уровня 1,25-дигидрооксивитамина D (1,25 (ОН)2D) . Мыши с отсутствием FGF-23 характеризовались тяжелой кальцификацией сосудов и мягких тканей . Важно знать, что и у мышей с отсутствием Клото-белка также отмечалась тяжелая сосудистая кальцификация, ассоциированная с гиперфосфатемией и гипервитаминозом D. Биологическая функция FGF-23 была изучена на моделях мышей при назначении рекомбинантного FGF-23 и с гиперэкспрессией FGF-23. В почках FGF-23 индуцирует фосфатурию, супрессируя экспрессию натрий-фосфорного котранспортера типа IIа и IIс в проксимальных канальцах . Фосфатурическое действие FGF-23 не проявляется в отсутствие натрий-водородного обменного регуляторного фактора 1 (NHERF-1) и увеличивается в присутствии паратгормона (ПТГ). Кроме того, FGF-23 супрессирует образование 1,25 (ОН)2D, ингибируя 1-альфа-гидроксилазу (CYP27B1), которая конвертирует 25-гидроксивитамин D в 1,25 (ОН)2D и стимулирует образование 24-гидроксилазы (CYP24), которая конвертирует 1,25 (ОН)2D в неактивные метаболиты в проксимальных канальцах почек. FGF-23 также ингибирует экспрессию интестинального натрий-фосфорного транспортера NPT2b , уменьшая всасывание фосфора в кишечнике. Механизм снижения уровня фосфора в крови представлен на рис. 1.

FGF-23 прямо воздействует на паращитовидные железы, регулируя секрецию и синтез паратгормона. Было показано, что FGF-23 активирует митоген-активированный протеин-киназный путь и таким образом снижает экспрессию гена ПТГ и секрецию как in vivo у крыс, так и in vitro в культуре паращитовидных клеток . В другом исследовании было показано, что FGF-23 повышает экспрессию паратиреоидной 1-альфа-гидроксилазы , которая конвертирует 25-гидроксивитамин D в 1,25 (ОН)2D.

Регуляция FGF-23

Секреция FGF-23 регулируется местно в костях при участии белкового матрикса дентина-1 и фосфат-регулирующей эндопептидазы . Увеличение секреции FGF-23 под воздействием 1,25 (ОН)2D показано как in vivo, так и in vitro, этот эффект опосредован через витамин D ответственные частицы, представленные в FGF-23 активаторе . В клинических исследованиях показано, что назначение 1,25 (ОН)2D диализным пациентам приводило к повышению уровня FGF-23 в крови . Применение высокофосфорной диеты в течение нескольких дней в экспериментальных и клинических исследованиях также приводило к увеличению уровня FGF-23 у мышей и у людей . Недавно проведенные исследования показали, что эстрогены и применение парентерального железа при лечении железодефицитной анемии могут приводить к значительному повышению FGF-23 .

FGF-23 и хроническая почечная недостаточность

Изучение уровня FGF-23 у больных с хронической почечной недостаточностью (ХПН) показало четкую его зависимость от уровня клубочковой фильтрации . Повышение FGF-23 уже на ранних стадиях ХПН направлено на поддержание нейтрального баланса фосфора, за счет увеличения экскреции фосфора с мочой, уменьшения гастроинтестинальной абсорбции фосфора и супрессии продукции 1,25 (ОН)2D . У больных с терминальной стадией ХПН уровень FGF-23 может повышаться уже в 1000 раз по сравнению с нормой . Несмотря на такое значительное повышение уровня FGF-23, оно не приводит к должному результату, что связано с дефицитом необходимого кофактора — белка Kлото, снижение уровня которого было показано в работах Koh N. с соавт. и Imanishi Y. у больных с ХПН . Кроме этого, повышение уровня FGF-23 происходит компенсаторно, в силу значительного снижения числа функционирующих нефронов у больных с уремией. Лечение кальцитриолом вторичного гиперпаратиреоза также может быть одной из причин повышенного уровня FGF-23, независимо от уровня фосфора в крови . Имеется обратная зависимость между уровнями 1,25 (ОН)2D и FGF-23 в сыворотке крови больных. Повышение FGF-23 у больных с ХПН, направленное на поддержание нормального уровня фосфора, приводит к снижению продукции 1,25 (ОН)2D, что запускает развитие вторичного гиперпаратиреоза. Паратгормон также поддерживает нормальный баланс фосфора, но не только через экскрецию фосфора, но и редуцируя экскрецию кальция и стимулируя продукцию 1,25 (ОН)2D. Однако, несмотря на это, при ХПН, в связи с уменьшением числа нефронов, компенсаторно увеличивается уровень ПТГ. При ХПН уровень FGF-23 прямо коррелирует с уровнем ПТГ, в отличие от нормы, когда имеется обратная зависимость, так как FGF-23 супрессирует синтез и экскрецию ПТГ. Это может происходить только при наличии резистентности паращитовидных желез к действию FGF-23. Подобный парадокс наблюдается и при рефрактерном вторичном гиперпаратиреоидизме, при котором нет ответа паращитовидных желез на прием кальция и кальцитриола. Это явление частично объясняется снижением экспрессии кальций-чувствительных рецепторов (CаЧР) и витамин D-рецепторов (ВДР), в паращитовидных железах с нодулярной и тотальной гиперплазией . Недавно было также показано, что содержание белка Клото и экспрессия FGF рецепторов 1 значительно снижено при уремической гиперплазии паращитовидных желез . Это положение подтверждено в эксперименте на уремических крысах in vivo, когда высокое содержание FGF-23 не привело к ингибиции секреции ПТГ , и in vitro на культуре паращитовидных желез крыс . Надо отметить, что уровень FGF-23 может быть предиктором эффективности лечения вторичного гиперпаратиреоза у диализных больных активными метаболитами витамина D . Длительное применение больших доз активных метаболитов витамина D при вторичном гиперпаратиреозе неуклонно ведет к повышению уровня FGF-23, а следовательно, к гиперплазии паращитовидных желез и резистентности к терапии.

FGF-23 как самостоятельный фактор риска

Гиперфосфатемия — один из основных факторов риска кардиоваскулярных болезней, нарушений минерального обмена и заболеваний кости. На ранних стадиях ХПН уровень фосфора поддерживается на нормальном уровне, в частности, за счет гиперсекреции FGF-23. Однако в последующем в силу ряда причин, описанных выше, наступает гиперфосфатемия, несмотря на высокий уровень FGF-23. Гиперфосфатемия прямо коррелирует с кальцификацией сосудов, кардиомиопатией, что может объяснять прямую корреляцию между уровнем фосфора, кардиоваскулярной заболеваемостью и летальностью. При высоком уровне фосфора в крови наблюдается и высокий уровень FGF-23 у больных с терминальной ХПН, этот факт мог бы отражать вторичность влияния FGF-23 на летальность. Однако недавно были получены данные, свидетельствующие о том, что летальность у больных на диализе прямо коррелирует с уровнем FGF-23, независимо от уровня концентрации фосфора в крови . Одним из объяснений высокой смертности пациентов при повышении уровня FGF-23 может служить выявленная независимая ассоциация FGF-23 с гипертрофией левого желудочка (рис. 2) . Однако до последнего времени не был выяснен вопрос: FGF-23 — только простой маркер гипертрофии левого желудочка (ГЛЖ) или имеется патогенетическая связь между ними. В фундаментальной работе Christian Faul с большим авторским коллективом было убедительно показано, что FGF-23 может прямо приводить к развитию гипертрофии левого желудочка. Исследование включало несколько этапов, на первом этапе было обследовано более 3000 пациентов с почечной недостаточностью, у которых определяли базовый уровень FGF-23 и проводили эхокардиографию (ЭхоКГ) через 1 год. Средний индекс массы ЛЖ (ИМЛЖ) к росту составил 52 ± 0,3 гм -2,7 (нормальный уровень < 50 у мужчин; < 47 у женщин), ГЛЖ была выявлена у 52% пациентов. Каждое увеличение на 1 логарифмическую единицу FGF-23 (lnFGF23) ассоциировалось с повышением ИМЛЖ на 1,5 г/м 2 (p < 0,001), после коррекции на другие факторы риска. Затем исследователи изучили риск появления ГЛЖ у 411 пациентов, которые имели нормальные ЭхоКГ- показатели, через 2,9 ± 0,5 г. У 84 пациентов (20%) впервые была выявлена ГЛЖ, причем у нормотензивных пациентов каждое повышение на 1 ед. lnFGF23 приводило к учащению возникновения ГЛЖ de novo в 4,4 раза (p = 0,001), а высокие содержание FGF-23 обуславливало 7-кратное увеличение частоты ГЛЖ независимо от наличия или отсутствия артериальной гипертензии. В этой же работе была подтверждена гипотеза прямого влияния FGF-23 на кардиомиоциты. Сравнивали ответ изолированных кардиомиоцитов новорожденных крыс путем воздействия на них FGF-23. Иммуногистохимический и морфометрический анализ кардиомиоцитов показал значительное увеличение площади их клеточной поверхности, а также повышение уровня белка альфа-актинина, свидетельствующего об увеличении саркомеров. Были обнаружены повышение экспрессии эмбриональных бета-миозиновых тяжелых цепей (МТЦ) и одновременная депрессия зрелых альфа-миозиновых тяжелых цепей при увеличении FGF-23. Такое переключение изоформ МТЦ со зрелых на эмбриональные указывает на реактивацию эмбриональной генной программы, которая ассоциируется с гипертрофией . FGF-23 и FGF-2 также уменьшают экспрессию предсердного и мозгового натрийуретического пептида, маркеров ГЛЖ . FGF-23 уменьшает экспрессию средней цепочки ацил-КoA дегидрогеназы (СЦАГ), энзима, регулирующего оксидацию жирных кислот. Гипертрофированные кардиомиоциты переключаются на энергию с жирных кислот на углеводы, что является маркером уменьшения экспрессии СЦГА . FGF-23 вызывает ГЛЖ независимо от корецептора белка Клото, который экспрессируется преимущественно в почках и паращитовидных железах и отсутствует в кардиомиоцитах . Биологические эффекты факторов роста фибробластов проявляются после связывания с FGF1-FGF4-рецепторами , при этом FGF-23 может связываться с разными изоформами FGF-рецепторов с различной степенью аффинности . В работе Christian Faul с соавт. был показан прогипертрофический эффект FGF-23 и FGF-2 на кардиомиоциты, который исчезал после применения ингибитора FGF-рецепторов PD173074, что доказало возможность воздействия FGF-23 через FGF-рецепторы, независимо от белка Клото. Активация рецепторов, как было выяснено, происходит через активацию кальцийнерин-А дефосфорилирующие факторы транскрипции ядерного фактора, активирующего Т-клетки, ведущих к ядерной транслокации, а блокада их приводит к снижению действия FGF-23. Интересно отметить, что применение PD173074 предотвращало развитие ГЛЖ у крыс, несмотря на наличие у них ХПН и гипертензии.

Другой важной причиной летальности больных с ХПН является наличие у больных кальцификации сосудов, которая ассоциируется с высокой смертностью . Особенно это важно с учетом большой распространенности кальцификации коронарных сосудов у диализной популяции больных (рис. 3) .

У больных с ХПН развивается преимущественно кальцификации медии, которая ведет к повышению жесткости сосудов и высокой смертности от кардиоваскулярных причин . У диализных пациентов имеются разнообразные факторы риска развития сосудистой кальцификации (уремические токсины, сахарный диабет, длительный диализ, воспаление), однако нарушение минерального обмена играет ключевую роль в этом процессе. Повышение уровня фосфора > 2,4 ммоль/л индуцирует кальцификацию гладко- мышечных клеток (ГМК) in vitro . Фосфор транспортируется в клетки из экстрацеллюлярного пространства преимущественно при помощи мембранного натрий-зависимого котранспортера фосфатов III типа (Pit1), ассоциируясь с кальцификацией ГМК . Подобно фосфору, повышение кальция (> 2,6 ммоль/л) в культуре медии приводит к минерализации и фенотипическому изменению ГМК через Pit1, в результате ГМК трансформируются к остеобласт-подобные клетки . В последнее время получены данные о прямой корреляционной связи уровня FGF-23 c кальцификацией сосудов . Ассоциация FGF-23 с кальцификацией сосудов до сих пор не имеет ясного объяснения. Ряд авторов рассматривает FGF-23 как только биомаркер минерального нарушения при ХПН , так как понятна роль повышения уровня FGF-23 в ответ на повышение уровня фосфора в крови, а гиперфосфатемия доказанный фактор развития кальцификации сосудов. Однако новые данные свидетельствуют и о другой возможности воздействия FGF-23 на кальцификацию сосудов. Так, Giorgio Coen и соавт. показали обратную зависимость между фетуином А и FGF-23, а между тем ранее было продемонстрировано, что фетуин А может синтезироваться остеобластами и храниться в костях , что может предполагать влияние FGF-23 на уровень фетуина А, который, как известно, предотвращает кальцификацию сосудов .

В работе Majd A. I. и соавт. получены данные и о корреляции уровня FGF-23 с атеросклерозом, в ней авторы высказывают гипотезу, объясняющую это явление с повреждающим влиянием FGF-23 на эндотелий сосудов .

Дефицит витамина D часто наблюдается у больных с ХПН, в частности, из-за снижения продукции 1,25 (ОН)2D под влиянием FGF-23, что способствует развитию вторичного гиперпаратиреоза. Основным показанием для назначения активных метаболитов витамина D у больных с почечной недостаточностью является супрессия синтеза ПТГ и предотвращение болезней кости . Однако активация витамин D-рецепторов приводит к ряду биологических эффектов: супрессии ренина , регуляции иммунной системы и воспаления , индукции апоптоза , сохранению эндотелия и др. У мышей, нокаутированных по ВДР-гену, индуцируется гипертрофия и фиброз миокарда . Дефицит витамина D — доказанный нетрадиционный фактор риска сердечно-сосудистых осложнений и летальности у больных с ХПН , но также повышает риск смерти у больных сердечной недостаточностью . Кроме того, дефицит витамина D ассоциируется с сердечной недостаточностью и внезапной смертью в общей популяции . Высокий уровень FGF-23 ассоциируется с низким содержанием витамина D, что также может приводить к увеличению летальности, однако надо помнить, что чрезмерные дозы витамина D могут повышать уровень FGF-23 . Механизм действия FGF-23 в норме и патологии представлен на рис. 4.

До настоящего времени не разработаны подходы к коррекции уровня FGF-23 у больных с ХПН, однако появились обнадеживающие результаты при применении цинакалцета, который снижал уровень FGF-23 , супрессируя функции остеобластов (рис. 5). С другой стороны, применение ингибиторов ангиотензина II приводит к повышению Klotho mRNA и увеличению продолжительности жизни .

Литература

  1. Riminucci M., Collins M. T., Fedarko N. S. et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting // Journal of Clinical Investigation. 2003; 112 (5): 683-692.
  2. Khosravi A., Cutler C. M., Kelly M. H. et al. Determination of the elimination half-life of fibroblast growth factor-23 // Journal of Clinical Endocrinology and Metabolism. 2007; 92 (6): 2374-2377.
  3. Sitara D., Razzaque M. S., Hesse M. et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice // Matrix Biology. 2004; 23 (7): 421-432.
  4. Shimada T., Kakitani M., Yamazaki Y. et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism // Journal of Clinical Investigation. 2004; 113 (4): 561-568.
  5. Kuro-o M., Matsumura Y., Aizawa H. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing // Nature. 1997; 390: 45-51.
  6. Shimada T., Hasegawa H., Yamazaki Y. et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis // J Bone Miner Res. 2004; 19: 429-435.
  7. Shimada T., Yamazaki Y., Takahashi M. et al. Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism // Am J Physiol Renal Physiol. 2005; 289: F1088-F1095.
  8. Saito H., Kusano K., Kinosaki M. et al Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1 alpha,25-dihydroxyvitamin D3 production // J Biol Chem. 2003, 278: 2206-2211.
  9. Ben-Dov I. Z., Galitzer H., Lavi-Moshayoff V. et al. The parathyroid is a target organ for FGF23 in rats // J Clin Invest. 2007; 117: 4003-4008.
  10. Krajisnik T., Bjorklund P., Marsell R. et al. Fibroblast growth factor-23 regulates parathyroid hormone and 1 alpha-hydroxylase expression in cultured bovine parathyroid cells // J Endocrinol. 2007; 195: 125-131.
  11. Lorenz-Depiereux B., Bastepe M., Benet-Pagиs A. et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis // Nat Genet. 2006; 38: 1248-1250.
  12. Liu S., Tang W., Zhou J. et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D // J. Am. Soc. Nephrol. 2006; 17: 1305-1315.
  13. et al. Intravenous calcitriol therapy increases serum concentration of fibroblast growth factor 23 in dialysis patients with secondary hyperparathyroidism // Nephron Clin Pract. 2005; 101: c94-c99.
  14. Perwad F., Azam N., Zhang M. Y. et al. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice // Endocrinology. 2005; 146: 5358-5364.
  15. Carrillo-Lуpez N., Romбn-Garcнa P., Rodrнguez-Rebollar A. et al. Indirect regulation of PTH by estrogens may require FGF23 // J Am Soc Nephrol. 2009; 20: 2009-2017.
  16. Schouten B. J., Hunt P. J., Livesey J. H., Frampton C. M., Soule S. G. FGF23 elevation and hypophosphatemia after intravenous iron polymaltose: a prospective study // J Clin Endocrinol Metab. 2009; 94: 2332-2337.
  17. Gutierrez O., Isakova T., Rhee E. et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease // J Am Soc Nephrol. 2005; 16: 2205-2215.
  18. Seiler S., Heine G. H., Fliser D. Clinical relevance of FGF-23 in chronic kidney disease // Kidney International. 2009; 114, supplement: S34-S42.
  19. Gutierrez O., Isakova T., Rhee E. et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease // Journal of the American Society of Nephrology. 2005; 16 (7): 2205-2215.
  20. Koh N., Fujimori T., Nishiguchi S. et al. Severely reduced production of klotho in human chronic renal failure kidney // Biochemical and Biophysical Research Communications. 2001; 280 (4): 1015-1020.
  21. Imanishi Y., Inaba M., Nakatsuka K. et al. FGF-23 in patients with end-stage renal disease on hemodialysis // Kidney Int. 2004; 65: 1943-1946.
  22. Nishi H., Nii-Kono T., Nakanishi S. et al. Intravenous calcitriol therapy increases serum concentrations of fibroblast growth factor-23 in dialysis patients with secondary hyperparathyroidism // Nephron Clin Pract. 2005; 101: c94-c99.
  23. Saito H., Maeda A., Ohtomo S. et al. Circulating FGF-23 is regulated by 1-alpha, 25-dihydroxyvitamin D3 and phosphorus in vivo // J Biol Chem. 2005; 280: 2543-2549.
  24. Kifor O., Moore F. D. Jr., Wang P. et al. Reduced immunostaining for the extracellular Ca2+-sensing receptor in primary and uremic secondary hyperparathyroidism // J Clin Endocrinol Metab. 1996; 81: 1598-1606.
  25. Yano S., Sugimoto T., Tsukamoto T. et al. Association of decreased calcium-sensing receptor expression with proliferation of parathyroid cells in secondary hyperparathyroidism // Kidney Int. 2000; 58: 1980-1986.
  26. Tokumoto M., Tsuruya K., Fukuda K., Kanai H., Kuroki S., Hirakata H. Reduced p21, p27 and vitamin D receptor in the nodular hyperplasia in patients with advanced secondary hyperparathyroidism // Kidney Int. 2002; 62: 1196-1207.
  27. Komaba H., Goto S., Fujii H. et al. Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients // Kidney Int. 2010; 77: 232-238.
  28. Kumata C., Mizobuchi M., Ogata H. et al. Involvement of α-klotho and fibroblast growth factor receptor in the development of secondary hyperparathyroidism // Am J Nephrol. 2010; 31: 230-238.
  29. Galitzer H., Ben-Dov I. Z., Silver J., Naveh-Many T. Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease // Kidney Int. 2010; 77: 211-218.
  30. Canalejo R., Canalejo A., Martinez-Moreno J. M. et al. FGF23 fails to inhibit uremic parathyroid glands // J Am Soc ephrol. 2010; 21: 1125-1135.
  31. Nakanishi S., Kazama J. J., Nii-Kono T. et al. Serum fibroblast growth factor-23 levels predict the future refractory hyperparathyroidism in dialysis patients // Kidney Int. 2005; 67: 1171-1178.
  32. Kazama J. J., Sato F., Omori K. et al. Pretreatment serum FGF-23 levels predict the efficacy of calcitriol therapy in dialysis patients // Kidney Int. 2005; 67: 1120-1125.
  33. Guillaume Jean, Jean-Claude Terrat, Thierry Vanel et al. High levels of serum fibroblast growth factor (FGF)-23 are associated with increased mortality in long haemodialysis patients // Nephrol. Dial. Transplant. 2009, 24 (9): 2792-2796.
  34. Mirza M. A., Larsson A., Melhus H., Lind L., Larsson T. E. Serum intact FGF23 associate with left ventricular mass, hypertrophy and geometry in an elderly population // Atherosclerosis. 2009; 207 (2): 546-551.
  35. Kardami E. et al. Fibroblast growth factor 2 isoforms and cardiac hypertrophy // Cardiovasc Res. 2004; 63 (3): 458-466.
  36. Negishi K., Kobayashi M., Ochiai I. et al. Association between fibroblast growth factor 23 and left ventricular hypertrophy in maintenance hemodialysis patients. Comparison with B-type natriuretic peptide and cardiac troponin T // Circ J. 2010, Nov 25; 74 (12): 2734-2740.
  37. Christian Faul Ansel P. Amaral, Behzad Oskouei et al. FGF23 induces left ventricular hypertrophy // J Clin Invest. 2011; 121 (11): 4393-4408.
  38. Morkin E. Control of cardiac myosin heavy chain gene expression // Microsc Res Tech. 2000; 50 (6): 522-531.
  39. Izumo S. et al. Myosin heavy chain messenger RNA and protein isoform transitions during cardiac hypertrophy. Interaction between hemodynamic and thyroid hormone-induced signals // J Clin Invest. 1987; 79 (3): 970-977.
  40. Molkentin J. D. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy // Cell. 1998; 93 (2): 215-228.
  41. Komuro I., Yazaki Y. Control of cardiac gene expression by mechanical stress // Ann Rev Physiol. 1993; 55: 55-75.
  42. Rimbaud S. et al. Stimulus specific changes of energy metabolism in hypertrophied heart // J Mol Cell Cardiol. 2009; 46 (6): 952-959.
  43. Urakawa I. et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23 // Nature. 2006; 444 (7120): 770-774.
  44. Jaye M., Schlessinger J., Dionne C. A. Fibroblast growth factor receptor tyrosine kinases: molecular analysis and signal transduction // Biochim Biophys Acta. 1992; 1135 (2): 185-199.
  45. Zhang X., Ibrahimi O. A., Olsen S. K., Umemori H., Mohammadi M., Ornitz D. M. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family // J Biol Chem. 2006; 281 (23): 15694-15700.
  46. Yu X. et al. Analysis of the biochemical mechanisms for the endocrine actions of fibroblast growth factor-23 // Endocrinology. 2005; 146 (11): 4647-4656.
  47. Jacques Blacher, Alain P. Guerin, Bruno Pannier et al. Arterial Calcifications, Arterial Stiffness, and Cardiovascular Risk in End-Stage Renal Disease Hypertension. 2001; 38: 938-942.
  48. Kalpakian M. A., Mehrotra R. Vascular calcification and disordered mineral metabolism in dialysis patients // Semin Dial. 2007; 20: 139-143.
  49. London G. M. Cardiovascular calcifications in uremic patients: clinical impact on cardiovascular function // Journal of the American Society of Nephrology. 2003; 14 (supplement 4): S305-S309.
  50. Jono S., McKee M. D., Murry C. E. et al. Phosphate regulation of vascular smooth muscle cell calcification // Circulation Research. 2000; 87 (7): E10-E17.
  51. Li X., Yang H. Y., Giachelli C. M. Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification // Circulation Research. 2006; 98 (7): 905-912.
  52. Yang H., Curinga G., Giachelli C. M. Elevated extracellular calcium levels induce smooth muscle cell matrix mineralization in vitro // Kidney International. 2004; 66 (6): 2293-2299.
  53. Giachelli C. M. Vascular calcification mechanisms // Journal of the American Society of Nephrology. 2004; 15 (12): 2959-2964.
  54. Nasrallah M. M., El-Shehaby A. R., Salem M. M. et al. Fibroblast growth factor-23 (FGF-23) is independently correlated to aortic calcification in haemodialysis patients // Nephrol Dial Transplant. 2010; 25 (8): 2679-2685.
  55. Inaba M., Okuno S., Imanishi Y. et al. Role of fibroblast growth factor-23 in peripheral vascular calcification in non-diabetic and diabetic hemodialysis patients // Osteoporos Int. 2006; 17: 1506-1513.
  56. Giorgio Coen, Paolo De Paolis, Paola Ballanti et al. Peripheral artery calcifications evaluated by histology correlate to those detected by CT: relationships with fetuin-A and FGF-23 // J. Nephrol. 2011; 24 (03): 313-321.
  57. Coen G., Ballanti P., Silvestrini G. et al. Immunohistochemical localization and mRNA expression of matrix Gla protein and fetuin-A in bone biopsies of hemodialysis patients // Virchows Arch. 2009; 454: 263-271.
  58. Ketteler M., Wanner C., Metzger T. et al. Deficiencies of calcium-regulatory proteins in dialysis patients: a novel concept of cardiovascular calcification in uremia // Kidney Int Suppl. 2003; 84: 84-87.
  59. Majd A. I. Mirza, Tomas Hansen, Lars Johansson et al. Relationship between circulating FGF23 and total body atherosclerosis in the community // Nephrol. Dial. Transplant. 2009; 24 (10): 3125-3131.
  60. Mirza M. A., Larsson A., Lind L. et al. Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community // Atherosclerosis. 2009; 205 (2): 385-390.
  61. Eknoyan G., Levin A., Levin N. W. Bone metabolism and disease in chronic kidney disease // Am J Kidney Dis. 2003: 42: 1-201.
  62. Li Y. C., Kong J., Wei M. et al. 1,25-Dihydroxyvitamin D (3) is a negative endocrine regulator of the renin-angiotensin system // J Clin Invest. 2002: 110: 229-238.
  63. Li Y. C. Vitamin D regulation of the renin-angiotensin system // J Cell Biochem. 2003: 88: 327-331.
  64. Tokuda N., Kano M., Meiri H. et al. Calcitriol therapy modulates the cellular immune responses in hemodialysis patients // Am J Nephrol. 2000: 20: 129-137.
  65. Tabata T., Shoji T., Kikunami K. et al. In vivo effect of 1 alpha-hydroxyvitamin D3 on interleukin-2 production in hemodialysis patients // Nephron. 1988: 50: 295-298.
  66. Welsh J. Induction of apoptosis in breast cancer cells in response to vitamin D and antiestrogens // Biochem Cell Biol. 1994: 72: 537-554.
  67. Yamamoto T., Kozawa O., Tanabe K., Akamatsu S., Matsuno H., Dohi S., Hirose H., Uematsu T. 1,25-Dihydroxyvitamin D3 stimulates vascular endothelial growth factor release in aortic smooth muscle cells: Role of p38 mitogen-activated protein kinase // Arch Biochem Biophys. 2002: 398: 1-6.
  68. Xiang W., Kong J., Chen S. et al. Cardiac hypertrophy in vitamin D receptor knockout mice: Role of the systemic and cardiac renin-angiotensin systems // Am J Physiol Endocrinol Metab. 2005: 288: E125-E132.
  69. Ravani P., Malberti F., Tripepi G. et al. Vitamin D levels and patient outcome in chronic kidney disease // Kidney International. 2009; 75 (1): 88-95.
  70. Zittermann A., Schleithoff S. S., Koerfer R. Vitamin D insufficiency in congestive heart failure: Why and what to do about it? // Heart Fail Rev. 2006; 11: 25-33.
  71. Zittermann A., Schleithoff S. S., Gotting C. et al. Poor outcome in end-stage heart failure patients with low circulating calcitriol levels // Eur J Heart Fail. 2008: 10: 321-327.
  72. Pilz S., Marz W., Wellnitz B. et al. Association of vitamin D deficiency with heart failure and sudden cardiac death in a large cross-sectional study of patients referred for coronary angiography // J Clin Endocrinol Metab. 2008; 93: 3927-3935.
  73. Nishi H., Nii-Kono T., Nakanishi S. et al. Intravenous calcitriol therapy increases serum concentrations of fibroblast growth factor-23 in dialysis patients with secondary hyperparathyroidism // Nephron Clin Pract. 2005; 101 (2): c94-99.
  74. James B. Wetmore, Shiguang Liu, Ron Krebill et al. Effects of Cinacalcet and Concurrent Low-Dose Vitamin D on FGF23 Levels in ESRD. CJASN January 2010, vol. 5, № 1: 110-116.
  75. Hryszko T., Brzosko S., Rydzewska-Rosolowska A. et al. Cinacalcet lowers FGF-23 level together with bone metabolism in hemodialyzed patients with secondary hyperparathyroidism // Int Urol Nephrol Int Urol Nephrol. 2011: 27.
  76. Tang R., Zhou Q., Shu J. et al. Effect of cordyceps sinensis extract on Klotho expression and apoptosis in renal tubular epithelial cells induced by angiotensin II // Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2009; 34: 300-307.
  77. Kurosu H., Yamamoto M., Clark J. D. et al. Suppression of aging in mice by the hormone Klotho // Science. 2005; 309: 1829-1833.

Е. В. Шутов, доктор медицинских наук, профессор

Здравствуйте друзья!

Тема сегодняшней статьи: Фактор роста фибробластов. В двух словах Фактор роста фибробластов (ФРФ)– это семейство белков, способствующих делению и выживанию клеток организма человека.

Если смотреть шире, то фактор роста фибробластов необходим для всех живых организмов от рождения и до смерти.

Не буду сейчас Вас нагружать друзья различными медицинскими терминами, все это можно прочитать в интернете на странице “Википедия”.

Здесь же я хочу сказать, что фактор роста фибробластов в организме имеется приблизительно до 20 лет. Далее количество этих белковых молекул резко снижается. К чему это ведет?

В первую очередь –к старению организма, так как чем старше мы становимся, тем менее интенсивно происходит деление клеток нашего организма, т.е не происходит замена старых клеток новыми, как это наблюдалось в молодости при наличии достаточного количества ФРФ.

Специалисты утверждают, что фактор роста фибробластов – ключевой элемент при лечении различных недугов (проблемы с суставами, кожей, волосами, нарушением сна, депрессия, низкий уровень либидо). ФРФ дает более скорое восстановление после полученных травм и заживлению ран, не зависимо от того, где она находится (в сердце, печени, коже или головном мозге).

И это друзья не пустые слова, данные утверждения подкреплены многочисленными лабораторными исследованиями. Кроме того, практическое применение диетических добавок: Ламинин и Ламинин-Омега+++ (содержащих фактор роста фибробластов) позволило собрать многочисленные отзывы в подтверждение этому факту.

Предлагаю посмотреть ниже один из таких отзывов:

Ещё предлагаю посмотреть видео о том, что говорят про Ламинин и фактор роста фибробластов на Aмериканском Tелевидении PBS:

Надеюсь друзья Вы понимаете, что Фактор роста фибробластов крайне необходим нашему организму для поддержания здоровья и долголетия.

Если вам интересна эта тема, свяжитесь со мной и я вам дам дополнительную информацию, Вы можете приобрести этот продукт в своем городе. Мой Skype: razzhivi62

Успехов Вам и здоровья!

Клеток и организация их в трубчатую структуру. FGF-1, ускоряя ангиогенез, обеспечивает рост новых кровеносных сосудов из существующей сосудистой сети.

Современные лекарственные средства для регуляции уровня сахара в крови у пациентов с диагнозом «сахарный диабет 2 типа », который является результатом сниженной чувствительности организма к , сопровождаются риском снижения концентрация в крови (гипогликемии). Проведя новый эксперимент с мышами, болеющими диабетом 2 типа, исследователи из Института Солка установили факт: одна инъекция фактора роста фибробластов FGF-1, без каких-либо побочных эффектов, приводит уровень глюкозы в крови к норме.

В 2012 году те же ученые сообщили о неожиданном открытии: у мышей с дефицитом фактора роста фибробластов FGF-1 сахарный диабет развивался быстрее при рационе питания, насыщенном .

Ученые продолжили делать инъекции фактора роста фибробластов FGF-1 мышам с ожирением и сахарным диабетом. Они были ошеломлены эффективностью, с которой белок воздействует на метаболизм животных: единственная его доза быстро снижала уровень глюкозы крови до нормальных показателей, остававшихся неизменными на протяжении двух дней.

Помимо серьезной вероятности возникновения гипогликемии, среди недостатков современных лекарств от диабета, является последствия в виде набора веса тела, появление проблем с сердцем и печенью. Подобные возможные побочные эффекты могут возникнуть при приеме гипогликемического препарата в форме таблеток Актос.

В высоких концентрациях FGF-1 не вызывал у мышей никаких нежелательных явлений. Посредством запуска естественной способности организма регулировать инсулин, белок поддерживал содержание глюкозы в крови на приемлемо безопасном уровне, эффективно подавляя основные симптомы заболевания.

Основной причиной, по которой исследователи считают фактор роста фибробластов FGF-1 наиболее подходящим средством лечения – FGF-1 воздействует непосредственно на специфические типы клеток, быстро включает их метаболизм.

Ученые уточняют: механизм влияния FGF-1 до конца не исследован, остаются нерешенные вопросы инсулинорезистентности.

Ученые обращают внимание: способность белка стимулировать рост, радикально отличается от его действия на глюкозу – это необходимо учитывать при рассмотрении фактора роста фибробластов FGF-1 как потенциального медикамента. Необходимо установить, какие процессы задействованы в ходе метаболизма и развития заболевания.

Опыты с участием людей планируются провести в будущем, однако должно пройти много времени, прежде чем медикамент будет допущен к клиническим испытаниям. В первую очередь нужно разработать новое поколение фактора роста фибробластов FGF-1, влияющее исключительно на глюкозу, а не на клеточный рост. При разработке достойной альтернативы, в руках ученых, возможно, окажется эффективный инструмент для борьбы с сахарным диабетом.

Факторы роста фибробластов

Факторы роста фибробластов (FGFs) – это семейство факторов роста (естественных соединений, способных стимулировать рост живых клеток), участвующих в процессе формирования новых кровеносных сосудов тканей или органов (ангиогенезе), заживлении ран и эмбриональном развитии. Факторы роста фибробластов играют важнейшую роль в процессах дифференцировки пролиферации . В человеческом организме присутствует двадцать два члена семейств FGF, все они являются структурно сходными сигнальными молекулами. Первый фактор роста фибробластов открыл бразильский ученый, доктор биохимии и молекулярной биологии Уго Агирре Армелин (Hugo Aguirre Armelin) в 1973 году, исследуя вытяжку из гипофиза.

Диабет

Существуют две основные разновидности сахарного диабета – 1 и 2 типа:

  • Диабет 1 типа (СД 1) характеризуется тем, что иммунная система сама атакует клетки поджелудочной железы, вырабатывающие инсулин. При этом в значительной степени разрушается способность тела производить этот гормон, регулирующий уровень глюкозы в крови,
  • Диабет 2 типа (СД 2) обычно развивающийся вследствие избыточного веса тела и гиподинамии, отличается формированием инсулинорезистентности – поджелудочная железа продолжает нормально продуцировать гормон, при этом клетки тела не могут его правильно использовать, в результате чего повышается концентрация сахара в крови. Частота заболеваемости диабетом 2 типа сильно возросла за последние несколько десятилетий. Сахарный диабет 2 типа является хроническим заболеванием, приводящем к серьезным проблемам со здоровьем. Излечить болезнь невозможно, можно лишь изменить течение заболевания приемом медикаментов, изменением образа жизни, включением в него диеты, приступив к мероприятиям по снижению веса тела и регулярные физические нагрузки.

Диабет 1 и 2 типов всегда сопровождается глюкозурией и кетонурией, реже протеинурией и гематурией:

Примечания

Примечания и пояснения к новости «Фактор роста фибробластов FGF-1 при сахарном диабете».

При написании новости о применении фактора роста фибробластов FGF-1 при сахарном диабете, в качестве источников использовались новостные материалы сайта Salk.Edu Института биологических исследований Солка (Salk Institute), информация интернет-портала Википедия, а также следующие печатные издания:

  • Серов В., Шехтер А. «Соединительная ткань». Издательство «Медицина», 1981 год, Москва ,
  • Лака Г., Захарова Т. «Сахарный диабет и беременность». Издательство «Феникс», 2006 год, Ростов-на-Дону ,
  • Иванов Д. «Нарушения обмена глюкозы у новорожденных». Издательство «Н-Л», 2011 год, Санкт-Петербург ,
  • Нижегородова Д., Зафранская М. «^7,^8,т-лимфоциты при рассеянном склерозе». Издательство «LAP Lambert Academic Publishing», 2012 год, Саарбрюккен, Германия .

 

Возможно, будет полезно почитать: