Схема генетической связи. Генетическая связь между классами органических и неорганических веществ

Генетические связи между классами неорганических соединений. Расчеты по химическим уравнениям массы, объема, количества вещества реагентов и продуктов реакций

С веществ одного класса можно получить вещества другого класса. Такая связь между классами неорганических соединений называют генетическим. Рассмотрим его более подробно. Из простых веществ можно получить сложное вещество, например:

С сложного вещества можно получить простые вещества, например:

Из металла реакцией горения можно получить основной оксид, который с водой образует основу. При воздействии на основу кислотой реакцией нейтрализации можно получить соль. Рассмотрим такой генетическую связь на примере металла бария. Составим схему:

1) 2Ba + O2 = 2BaO

2) BaO + H2O = Ba (OH)2

3) 3Ba (OH) 2 + 2H3PO4 = Ba3 (PO4)2 ¯ + 6H2O

С неметалла реакцией горения можно получить кислотный оксид, который с водой образует кислоту. При действии на кислоту основой реакцией нейтрализации можно получить соль. Рассмотрим такой генетическую связь на примере неметалла фосфора. Составим схему:

Составим уравнения химических реакций, с помощью которых можно осуществить следующие превращения:

1) 4P + 5O2 = 2P2O5

2) P2O5 + 3H2O = 2H3PO4

3) 2H3PO4 + 3Ba (OH)2 = Ba3 (PO4)2 ¯ + 6H2O

Приведенные выше схемы генетических связей можно представить в общем виде следующей схеме:
металл → основной оксид → основа →
соль

неметалл → кислотный оксид →
кислота

Рассмотрим примеры задач, связанных с расчетами по химическим уравнениям массы, объема, количества вещества реагентов и продуктов реакций.

Решение задач такого типа надо начинать с составления уравнения или нескольких уравнений тех реакций, о которых говорится в задаче. Расчеты можно проводить только по уравнению реакции, поэтому необходимо внимательно проверить все коэффициенты. Коэффициенты показывают не только число молекул исходных веществ и продуктов реакции, но и число моль веществ, участвующих в реакции. Имея такую информацию и зная массу, количество вещества (или в случае газов объем одного из веществ, реагирующих), можно определить число моль, массу (или в случае газов объем) любой другой вещества.

Задача № 1 . Определите массу гидроксида натрия, необходимое для полной нейтрализации 19,6 г серной кислоты.

Решение: Серная кислота H2SO4 является двух основных кислотой. Для полной нейтрализации одного моль этой кислоты необходимо два моль гидроксида натрия NaOH, что видно из уравнения химической реакции: H2SO4 + 2NaOH = Na2SO4 + 2 H2O

По известной массе серной кислоты определим количество вещества по формуле:

Молярная масса серной кислоты равна:

M (H2SO4) = 2 · Ar (H) + Ar (S) + 4 · Ar (O) = 2 · 1 + 32 + 4 · 16 = 98

Количество вещества серной кислоты равна:

Коэффициент перед формулой гидроксида натрия в уравнении реакции в два раза больше коэффициента перед формулой серной кислоты, поэтому:

ν (NaOH) = 2 · ν (H2SO4) = 2 · 0,2 моль = 0,4 моль

Определим массу гидроксида натрия, который соответствует этому количеству вещества, по формуле: m = ν · M

Молярная масса гидроксида натрия равен:

M (NaOH) = Ar (Na) + Ar (O) + Ar (H) = 23 + 16 + 1 = 40

Масса гидроксида натрия равен:

Ответ: для полной нейтрализации 19,6 г серной кислоты необходимо 16 г гидроксида натрия.

Задача № 2. Определите объем водорода (н. у.), Который выделится при действии соляной кислоты на 13,5 г алюминия.

ν (H2) = 1,5 · ν (Al) = 1,5 · 0,5 моль = 0,75 моль

Объем газообразного водорода при нормальных условиях (н.у.) определяем по формуле: V = ν · Vm.

Объем водорода равна:

Ответ: при действии соляной кислоты на 13,5 г алюминия выделится 16,8 л водорода при нормальных условиях.

Между простыми веществами, оксидами, основаниями, кислотами и солями существует генетическая связь, а именно – возможность их взаимного перехода (превращения).

Например, простое вещество – кальций в результате взаимодействия с кислородом превращается в оксид: 2Ca+O 2 = 2CaO.

Оксид кальция при взаимодействии с водой образует гидроксид кальция CaO+H 2 O=Ca(OH) 2, а последний при взаимодействии с кислотой превращается в соль:Ca(OH) 2 +H 2 SO 4 =CaSO 4 + 2H 2 O.

Эти превращения можно представить схемой:

Ca→ CaO→ Ca(OH) 2 →CaSO 4

Подобную схему можно записать и для неметалла, например, серы:

S→SO 3 →H 2 SO 4 →CaSO 4

Итак, различными путями получена одна и та же соль.

Возможен и обратный переход от соли к другим классам неорганических соединений и простым веществам:

CuSO 4 →Cu(OH) 2 →CuO→Cu

CuSO 4 + 2NaOН = Cu(OH) 2 ↓+ Na 2 SO 4

Cu(OH) 2 =CuO+H 2 О

CuO+H 2 =Cu+H 2 O(восстановление меди)

Подобная связь между классами неорганических соединений, основанная на получении веществ одного класса из веществ другого, называется генетической.

Свойства сложных соединений отражает генетическая схема основных классов неорганических соединений (см. рисунок). Она отражает ступени развития неорганического вещества по двум основным линиям – от типичных металлов до типичных неметаллов, обладающих противоположными свойствами.

Металлы, химическим свойством атома которых является способность отдавать электроны, и неметаллы, главным химическим свойством которых является способность их атомов присоединять электроны, противоположные друг другу по свойствам. При усложнении состава веществ эти противоположные тенденции продолжают проявляться.

Типичные металлы и переходные элементы в низшей степени окисления образуют основные оксиды, а типичные неметаллы и переходные элементы в высокой степени окисления образуют противоположные по свойствам кислотные оксиды.

Простые вещества

Амфотерные

Неметаллы

Основные оксиды

Амфотерные

Кислотные

Основания

Амфотерные

гидроксиды

Генетическая схема основных классов неорганических соединений

При дальнейшем усложнении состава веществ образуются гидроксиды, причем основным оксидам соответствуют основания, а кислотным оксидам соответствуют кислоты. Противоположные по свойствам основания и кислоты активно реагируют между собой, образуя соли. Взаимодействие противоположностей является движущей силой реакции. Поэтому основной и кислотный оксиды, основания и кислоты активно взаимодействуют друг с другом, а два кислотных оксида или два основных оксида не взаимодействуют, так как свойства у них близки.

Таким образом, свойства сложного соединения определяются на основе свойств образующего его элементов. Основные закономерности изменения этих свойств обобщены в следующих приложениях (табл. 6).

1. В периодах с увеличением порядкового номера свойства элементов изменяются от металлических к неметаллическим. Увеличивается число электронов на внешнем уровне, возрастает степень окисления элемента, уменьшается радиус атома и иона, увеличивается энергия ионизации и сродство к электрону. В соответствии с этим уменьшаются основные и увеличиваются кислотные свойства оксидов и гидроксидов.

2. В главных подгруппах с увеличением порядкового номера элемента увеличиваются основные свойства оксидов и гидроксидов. Для элементов побочных подгрупп с увеличением порядкового номера характерно более сложное изменение свойств. Сначала металлические свойства усиливаются, а затем уменьшаются.

3. Активным металлам соответствуют оксиды и гидроксиды с сильно выраженными основными свойствами. Самые активные металлы – щелочные и щелочно-земельные. Они образуют растворимые в воде оксиды и сильные растворимые основания – щелочи.

4. Малоактивные металлы (все, кроме щелочных и щелочно-земельных) образуют слабые основания, трудно растворимые в воде:

Cu(OH) 2 ,Fe(OH) 3 .

5. Активным неметаллам соответствуют оксиды и гидроксиды с сильно выраженными кислотными свойствами.

6. Амфотерные металлы образуют амфотерные оксиды и гидроксиды.

7.Если элемент проявляет различные степени окисления, то ему соответствуют оксиды и гидроксиды с различными свойствами.


Инструкция для обучающихся по заочному курсу «Общая химия для 12 класса» 1. Категория обучающихся: материалы данной презентации предоставляются обучающемуся для самостоятельного изучения темы «Вещества и их свойства», из курса общей химии 12 класса. 2. Содержание курса: включает 5 презентаций тем. Каждая учебная тема содержит четкую структуру учебного материала по конкретной теме, последний слайд контрольный тест – задания для самоконтроля. 3. Срок обучения по данному курсу: от одной недели до двух месяцев (определяется индивидуально). 4. Контроль знаний: учащийся предоставляет отчет о выполнении тестовых заданий – лист с вариантами заданий, с указанием темы. 5. Оценивание результата: «3» - выполнено 50% заданий, «4» - 75%, «5» % заданий. 6. Результат обучения: зачет (незачет) изученной темы.





Уравнения реакций: 1. 2Cu + о 2 2CuO оксид меди (II) 2. CuO + 2 HCl CuCl 2 + Н 2 О хлорид меди (II) 3. CuCl NaOH Cu(OH) Na Cl гидроксид меди (II) 4. Cu(OH) 2 + H 2 SO 4 CuSO 4 + 2Н 2 О сульфат меди (II)








Генетический ряд органических соединений. Если в основу генетического ряда неорганической химии составляют вещества, образованные одним химическим элементом, то основу генетического ряда в органической химии составляют вещества с одинаковым числом атомов углерода в молекуле.





Схема реакций: Каждой цифре над стрелкой соответствует определенное уравнение реакции: этаналь этанол этен этан хлорэтан этин Уксусная (этановая) кислота


Уравнения реакций: 1. С 2 Н 5 Cl + H 2 O С 2 Н 5 OH + HCl 2. С 2 Н 5 OH + O СН 3 СН O + H 2 O 3. СН 3 СН O + H 2 С 2 Н 5 OH 4. С 2 Н 5 OH + HCl С 2 Н 5 Cl + H 2 O 5. С 2 Н 5 Cl С 2 Н 4 + HCl 6. С 2 Н 4 С 2 Н 2 + H 2 7. С 2 Н 2 + H 2 O СН 3 СН O 8. СН 3 СН O + Ag 2 O СН 3 СOOH + Ag

>> Химия: Генетическая связь между классами органических и неорганических веществ

Материальный мир. в котором мы живем и крохотной частичкой которого мы являемся, един и в то же время бесконечно разнообразен. Единство и многообразие химических веществ этого мира наиболее ярко проявляется в генетической связи веществ, которая отражается в так называемых генетических рядах. Выделим наиболее характерные признаки таких рядов:

1. Все вещества этого ряда должны быть образованы одним химическим элементом.

2. Вещества, образованные одним и тем же элементом, должны принадлежать к различным классам, то есть отражать разные формы его существования.

3. Вещества, образующие генетический ряд одного элемента, должны быть связаны взаимопревращениями. По этому признаку можно различать полные и неполные генетические ряды.

Обобщая сказанное выше, можно дать следующее определение генетического ряда:
Генетическим называют ряд веществ представителей разных классов, являющихся соединениями одною химического элемента, связанных взаимопревращениями и отражающих общность происхождения этих веществ или их генезис.

Генетическая связь - понятие более общее, чем генетический ряд. который является пусть и ярким, но частным проявлением этой связи, которая реализуется при любых взаимных превращениях веществ. Тогда, очевидно, под это определение подходит н первый прицеленный в тексте параграфа ряд веществ.

Для характеристики генетической связи неорганических веществ мы рассмотрим три разновидности генетических рядов:

II. Генетический ряд неметалла. Аналогично ряду металла более богат связями ряд неметалла с разными степенями окисления, например генетический ряд серы со степенями окисления +4 и +6.

Затруднение может вызвать лишь последний переход. Если вы выполняете задания такого типа, то руководствуйтесь правилом: чтобы получить простое вещество из окнелгнного соединения элементе, нужно взять для атой цели самое восстановленное его соединение, например летучее водородное соединение неметалла .

III. Генетический ряд металла, которому соответствуют амфотерные оксид и гндроксид, очень богат саязями. так как они проявляют в зависимости от условий то свойства кислоты, то свойства основания. Например, рассмотрим генетический ряд цинка:

В органической химии также следует различать более общее понятие - генетическая связь и более частное понятие генетический ря. Если основу генетического ряда в неорганической химии составляют вещества, образованные одним химическим элементом, то основу генетического ряда в органической химии (химии углеродных соединений) составляют вещества с одикиконым числом атомов углерода в молекуле. Рассмотрим генетический ряд органических веществ, в кото-рый включим наибольшее число классов соединений:

Каждой цифре над стрелкой соответствует определенное урнпненне реакции (уравнение обратной реакции обозначено цифрой со штрихом):

Иод определение генетического ряда не подходит последний переход - образуется продукт не с двумя, и с множеством углеродных атомов, но аато с его помощью наиболее многообразно представлены генетические связи. И наконец, приведем примеры генетической связи между классами органических и неорганических соединений, которые доказывают единство мира веществ, где нет деления на органические и неорганические вещества.

Воспользуемся возможностью повторить названия реакций, соответствующих предложенным переходам:
1. Обжиг известняка:

1. Запишите уравнения реакций, иллюстрирующих следующие переходы:

3. При взаимодействии 12 г предельного одноатомного спирта с натрием выделилось 2.24 л водорода (н. у.). Найдите молекулярную формулу спирта и запишите формулы возможных изомеров.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

 

Возможно, будет полезно почитать: