Формула нахождения угла преломления. Углы преломления в разных средах

Явление преломления света.

Если световой пучок падает на поверхность, разделяющую две прозрачные среды разной оптической плотности, например воздух и воду, то часть света отражается от этой поверхности, а другая часть - проникает во вторую среду. При переходе из одной среды в другую луч света изменяет направление на границе этих сред. Это явление называется преломле­нием света.

Рассмотрим преломление света подробнее. На рисунке п оказаны: падающий луч АО, преломлённый луч ОВ и перпендикуляр CD, восстановленный из точки падения О к поверхности, разделяющей две разные среды. Угол АОС - угол падения, угол DOB - угол преломле­ния. Угол преломления DOB меньше угла падения АОС.

Луч света при переходе из воздуха в воду меняет своё направление, приближаясь к перпендикуляру CD. Вода - среда оптически более плотная, чем воздух. Если воду заменить какой-либо иной прозрачней средой, оптически более плотной, чем воздух, то преломлённый луч также будет приближаться к перпендикуляру. Поэтому можно сказать: если свет идет из среды оптически менее плотной в более плотную среду, то угол преломления всегда меньше угла падения.

Опыты показывают, что при одном и том же угле падения угол преломления тем меньше, чем плотнее в оптическом отношении среда, в которую проникает луч.
Если на пути преломлённого луча расположить перпендикулярно лучу зеркало, то свет отразится от зеркала и выйдет из воды в воздух по направлению падающего луча. Следовательно, лучи падающий и преломлённый обратимы так же, как обратимы падающий и отражённый лучи.
Если свет идёт из среды более оптически плотной в среду менее плотную, то угол преломления луча больше угла падения.

Давайте проведем дома маленький эксперимент. м дома маленькийэксперимент. ам надо опустить в стакан с водой карандаш, и он покажется поломанным. Э то можно объяснить только тем, что лучи света, идущие от карандаша, имеют в воде другое направление, чем в воздухе, т. е. происходит преломление света на границе воздуха с водой. Когда свет переходит из одной среды в другую, на границе раздела происходит отражение части падающего на неё света. Остальная часть света проникает в новую среду. Если свет падает под углом к поверхности раздела, отличным от прямого, от на границе световой луч изменяет своё направление.
Это и называется явлением преломлением света. Явление преломления света наблюдается на границе двух прозрачных сред и объясняется разной скоростью распространения света в различных средах. В вакууме скорость света составляет приблизительно 300000 км/с, во всех других

с редах она меньше.

На рисунке ниже показан луч, переходящий из воздуха в воду. Угол называется углом падения луча, а - углом преломления. Обратите внимание на то, что в воде луч приближается к нормали. Так происходит всякий раз, когда луч попадает в среду, где скорость света меньше. Если же свет распространяется из одной среды в другую, где скорость света больше, то он отклоняется от нормали.

Преломлением обусловлен целый ряд широко известных оптических иллюзий. Например, наблюдателю на берегу, кажется, что у человека, зашедшего в воду по пояс, ноги стали короче.

Законы преломления света.

Из всего сказанного заключаем:
1 . На границе раздела двух сред различной оптической плотности луч света при переходе из одной среды в другую меняет своё направление.
2. При переходе луча света в среду с большей оптической плотностью угол преломления меньше угла падения; при переходе луча света из оптически более плотной среды в среду менее плотную угол преломления больше угла паде ния.
Преломление света сопровождается отражением, причём с увеличением угла падения яркость отражённого пучка возрастает, а преломлённого ослабевает. Это можно увидеть проводя опыт, изображённом на рисунке. С ледовательно, отражённый пучок уносит с собой тем больше световой энергии, чем больше угол падения.

Пусть MN -граница раздела двух про зрачных сред, например, воздуха и воды, АО -падающий луч, ОВ - преломленный луч, -угол падения, -угол преломления, -скорость распространения света в первой среде, - скорость распространения света во второй среде.

Первый закон преломления звучит так: отношение синуса угла падения к синусу угла преломления является постоянной величиной для данных двух сред:

, где - относительный показатель преломления (показатель преломления второй среды относительно первой).

Второй закон преломления света очень напоминает второй закон отражения света:

падающий луч, луч преломленный и перпендикуляр, проведенный в точку падения луча, лежит в одной плоскости.

Абсолютный показатель преломления.

Скорость распространения света в воздухе почти не отличается от скорости света в вакууме: с м/с.

Если свет попадает из вакуума в какую-нибудь среду, то

где n - абсолютный показатель преломления данной среды. Относительный показатель преломления двух сред связанный с абсолютными показателями преломления этих сред, где и - соответственно абсолютные показатели преломления первой и второй сред.

Абсолютные показатели преломления света:

Вещество

Алмаз 2,42. Кварц 1,54. Воздух (при нормальных условиях) 1,00029. Этиловый спирт 1,36. Вода 1,33. Лёд 1,31. Скипидар 1,47. Плавленый кварц 1,46. Крон 1,52. Лёгкий флинт 1,58. Хлорид натрия (соль) 1,53.

(Как мы увидим в дальнейшем, показатель преломления n несколько меняется в зависимости от длины волны света – постоянное значение он сохраняет только в вакууме. Поэтому приведённые в таблице данные соответствуют желтому свету с длинной волны .)

Напимер, так как для алмаза , свет распространяется в алмазе со скоростью

Оптическая плотность среды.

Если абсолютный показатель преломления первой среды меньше абсолютного показателя преломления второй среды, то первая среда имеет меньшую оптическую плотность, нежели вторая и > . Оптическую плотность среды не следует путать с плотностью вещества.

Прохождение света сквозь плоско-параллельную пластинку и призму .

Большое практическое значение имеет прохождение света через прозрачные тела различной формы. Рассмотрим наиболее простые случаи.
Направим луч света сквозь толстую плоскопараллельную пластинку (пластинку, ограниченную параллельными гранями). Проходя через пластинку, луч света преломляется дважды: один раз при входе в пластинку, второй раз при выходе из пластинки в воздух.

Прошедший через пластинку луч света остаётся параллельным своему первоначальному направлению и только немного смещается. Это смещение тем больше, чем толще пластинка и чем больше угол падения. Величина смещения зависит и от того, из какого вещества изготовлена пластинка.
Примером плоскопараллельной пластинки служит оконное стекло. Но рассматривая предметы через стекло, мы не замечаем изменений в их расположении и форме потому, что стекло тонкое; лучи света, проходя оконное стекло, смещаются незначительно.
Если рассматривать какой-либо предмет через призму, то предмет кажетсясмещённым. Идущий от предмета луч света падает на призму в точке А, преломляется и идёт внутри призмы по направленшо АВ Дойдя до второй грани призмы. луч света ещё раз преломляется, отклоняясь к основанию призмы. Поэтому кажется, что луч идет из точки. располо женной на продолжении луча ВС, то есть предмет кажется смещённым к вершине угла, образованного преломляющими гранями призмы.

Полное отражение света.

Красивое зрелище представляет собой фонтан, у которого выбрасываемые струи освещаются изнутри. (Это можно изобразить в обычных условиях, проделав следующий опыт№1). Обьясним это явление чуть ниже.

При переходе света из оптически более плотной среды в оптически менее плотую наблюдается явление полного отражения света. Угол преломления в этом случае больший по сравнению с углом падения (рис. 141). При увеличении угла падения световых лучей от источника S на поверхность раздела двух сред МN наступит такой момент, когда преломленный луч пойдет вдоль границы раздела двух сред, то есть = 90°.

Угол падения , которому отвечает угол преломления = 90°, называют граничным углом полного отражения.

Если превысить этот угол, то лучи не выйдут из первой среды вообще, будет наблюдаться только явление отражения света от границы раздела двух сред.

Из первого закона преломления:

Так как , то .

Если вторая среда - воздух (вакуум), то где n - абсолютный показатель преломления среды, из которой идут лучи.

Объяснение явления наблюдаемого вами в опыте довольно простое. Луч света проходит вдоль струи воды и попадает на изогнутую поверхность под углом, большим предельного, испытывает полное внутреннее отражение, а затем опять попадает на противоположную сторону струи под углом опять больше предельного. Так луч проходит вдоль струи изгибаясь вместе с ней.

Но если бы свет полностью отражался внутри струи, то она не была бы видна извне. Часть света рассеивается водой, пузырьками воздуха и различными примесями, имеющимися в ней, а также вследствие неровностей поверхности струи, поэтому она видна снаружи.


ПРЕЛОМЛЕНИЕ СВЕТА ПРИ ПЕРЕХОДЕ ИЗ ВОДЫ В ВОЗДУХ

Опущенная в воду палочка, ложечка в стакане чая вследствие преломления света на поверхности воды кажутся нам преломленными.

Поместите на дно непрозрачного сосуда монету так, чтобы она не была видна. А теперь налейте в сосуд воды. Монета окажется видимой. Объяснение этого явления понятно из видео.

Посмотрите на дно водоема и попытайтесь оценить его глубину. Чаще всего сделать это правильно не удается.

Проследим более детально, как и насколько нам кажется уменьшенной глубина водоема, если мы смотрим на него сверху.

Пусть Н (рис. 17) - это истинная глубина водоема, на дне которого лежит небольшой предмет, например камешек. Свет, отраженный им, расходится во все стороны. Некоторый пучок лучей падает на поверхность воды в точке О снизу под углом а 1 , преломляется на поверхности и попадает в глаз. В соответствии с законом преломления можно записать:

но так как n 2 = 1, то n 1 sin a 1 = sin ϒ 1 .

Преломленный луч попадает в глаз в точке В. Заметим, что в глаз попадает не один луч, а пучок лучей, сечение которого ограничено зрачком глаза.

На рисунке 17 пучок показан тонкими линиями. Однако этот пучок узок и мы можем пренебречь его сечением, приняв его за линию АОВ.

Глаз проецирует А в точку А 1 , и глубина водоема нам кажется равной h.

Из рисунка видно, что кажущаяся глубина водоема h зависит от истинной величины Н и от угла наблюдения ϒ 1 .

Выразим эту зависимость математически.

Из треугольников АОС и А 1 ОС имеем:

Исключая из этих уравнений ОС, получим:

Учитывая, что а = ϒ 1 и sin ϒ 1 = n 1 sin a 1 = n sin a, получим:

В этой формуле зависимость кажущейся глубины водоема h от истинной глубины Н и угла наблюдения не Выступает явно. Для более отчетливого представления этой зависимости выразим ее графически.

На графике (рис. 18) по оси абсцисс отложены значения углов наблюдения в градусах, а по оси ординат - соответствующие им кажущиеся глубины h в долях действительной глубины Н. Полученная кривая показывает, что при малых углах наблюдения кажущаяся глубина

составляет около ¾ действительной и уменьшается по мере увеличения угла наблюдения. При угле наблюдения а = 47° наступает полное внутреннее отражение и луч из воды не может выйти наружу.

МИРАЖИ

В неоднородной среде свет распространяется непрямолинейно. Если мы представим себе среду, в которой показатель преломления изменяется снизу вверх, и мысленно разобьем ее на тонкие горизонтальные слои,

то, рассматривая условия преломления света при переходе от слоя к слою, заметим, что в такой среде луч света должен постепенно изменять свое направление (рис. 19, 20).

Такое искривление световой луч претерпевает в атмосфере, в которой по тем или иным причинам, главным образом благодаря неравномерному нагреванию ее, показатель преломления воздуха изменяется с высотой (рис. 21).


Воздух обычно нагревается от почвы, поглощающей энергию солнечных лучей. Поэтому температура воздуха понижается е высотой. Известно также, что с высотой понижается и плотность воздуха. Установлено, что с увеличением высоты показатель преломления уменьшается, поэтому лучи, идущие сквозь атмосферу искривляются, пригибаясь к Земле (рис. 21). Это явление получило название нормальной атмосферной рефракции. Вследствие рефракции небесные светила кажутся нам несколько «приподнятыми» (выше своей истинной высоты) над горизонтом.

Вычислено, что атмосферная рефракция «приподнимает» предметы, находящиеся на высоте 30°, на 1"40", на высоте 15°- на З"ЗО", на высоте 5° - на 9"45". Для тел, находящихся на горизонте, эта величина достигает 35". Эти цифры отклоняются в ту или другую сторону в зависимости от давления и температуры атмосферы. Однако по тем или иным причинам в верхних слоях атмосферы могут оказаться массы воздуха с температурой более высокой по сравнению с нижними слоями. Их могут принести ветры из жарких стран, например, из области горячей пустыни. Если в это время в нижних слоях находится холодный, плотный воздух антициклона, то явление рефракции может значительно усилиться и лучи света, выходящие от земных предметов вверх под некоторым углом к горизонту, могут вернуться обратно на землю (рис. 22).

Однако может случиться так, что у поверхности Земли вследствие сильного ее нагревания, воздух настолько разогревается, что показатель преломления света вблизи почвы станет меньше, чем на некоторой высоте над почвой. Если при этом стоит безветренная погода, то такое состояние может сохраниться довольно долго. Тогда лучи от предметов, падающие под некоторым довольно большим углом к поверхности Земли, могут искривляться настолько, что, описав дугу около поверхности Земли, они пойдут снизу вверх (рис. 23а). Возможен и случай, показанный на рисунке 236.

Описанные выше состояния в атмосфере и объясняют возникновение интересных явлений - атмосферных миражей. Эти явления обычно делят на три класса. К первому классу относят наиболее распространенные и простые по своему происхождению, так называемые озерные (или нижние) миражи, вызывающие столько надежд и разочарований у путников пустынь.


Французский математик Гаспар Монж, участвовавший в египетской кампании 1798 г., так описывает свои впечатления от миражей этого класса:

«Когда поверхность Земли сильно накалена Солнцем и только-только начинает остывать перед началом сумерек, знакомая местность больше не простирается до горизонта, как днем, а переходит, как кажется, примерно в одном лье в сплошное наводнение.

Деревни, расположенные дальше, выглядят словно острова среди обширного озера. Под каждой деревней - ее опрокинутое отражение, только оно не резкое, мелких деталей не видно, как отражение в воде, колеблемой ветром. Если станешь приближаться к деревне, которая кажется окруженной наводнением, берег мнимой воды все удаляется, водный рукав, отделявший нас от деревни, постепенно суживается, пока не исчезнет совсем, а озеро... теперь начинается за этой деревней, отражая в себе деревни, расположенные дальше» (рис. 24).

Объяснение этого явления простое. Нижние слои воздуха, разогретые от почвы, не успели еще подняться вверх; их показатель преломления света меньше, чем верхних. Поэтому лучи света, исходящие от предметов (например, от точки В на пальме, рис. 23а), изгибаясь в воздухе, попадают в глаз снизу. Глаз проецирует луч в точку В 1 . То же происходит с лучами, идущими от других точек предмета. Предмет кажется наблюдателю опрокинутым.

Откуда же вода? Вода - это отражение небосвода.

Чтобы увидеть мираж, нет надобности ехать в Африку. Его можно наблюдать в жаркий тихий летний день и у нас над разогретой поверхностью асфальтового шоссе.

Миражи второго класса называют верхними или миражами дальнего видения. На них больше всего похоже «неслыханное чудо», описанное Н. В. Гоголем. Приведем описания нескольких таких миражей.

С Лазурного берега Франции ранним ясным утром из вод Средиземного моря, из -за горизонта, поднимается темная цепочка гор, в которой жители узнают Корсику. Расстояние до Корсики больше 200 км, так что о прямой видимости не может быть и речи.

На английском побережье, близ Гастингса, можно видеть французский берег. Как сообщает натуралист Нье-диге, «близ Реджо в Калабрии, напротив сицилийского берега и города Мессины, временами видны в воздухе целые незнакомые местности с пасущимися стадами, кипарисовыми рощами и замками. Недолго продержавшись в воздухе, миражи исчезают».

Миражи дальнего видения появляются в том случае, если верхние слои атмосферы окажутся по каким-либо причинам, например при попадании туда нагретого воздуха, особенно разреженными. Тогда лучи, исходящие от земных предметов, искривляются сильнее и достигают земной поверхности, идя под большим углом к горизонту. Глаз же наблюдателя проецирует их в том направлении, по которому они входят в него.


Видимо, в том, что большое количество миражей дальнего видения наблюдается на побережье Средиземного моря, повинна пустыня Сахара. Горячие массы воздуха поднимаются над ней, затем уносятся на север и создают благоприятные условия для возникновения миражей.

Верхние миражи наблюдаются и в северных странах, когда дуют теплые южные ветры. Верхние слои атмосферы оказываются нагретыми, а нижние - охлажденными из-за наличия больших масс тающих льдов и снегов.

Иногда наблюдаются одновременно прямые и обратные изображения предметов. На рисунках 25-27 представлены именно такие явления, наблюдаемые в арктических широтах. Видимо, над Землей имеются перемежающиеся более плотные и более разреженные слои воздуха, искривляющие лучи света примерно так, как показано на рисунке 26.

Миражи третьего класса - сверхдальнего видения - трудно объяснить. Приведем описание нескольких из них.

«Опираясь на свидетельства нескольких лиц, заслуживающих доверия,- пишет К. Фламарион в книге «Атмосфера»,- я могу сообщить про мираж, который видели в городе Вервье (Бельгия) в июне 1815 года. Однажды утром жители города увидели в небе войско, и так ясно, что можно было различить костюмы артиллеристов, пушку со сломанным колесом, которое вот-вот отвалится... Это было утро сражения при Ватерлоо!» Расстояние между Ватерлоо и Вервье по прямой линии - 105 км.

Известны случаи, когда миражи наблюдались на расстоянии 800, 1000 и более километров.

Приведем еще один поразительный случай. В ночь на 27 марта 1898 г. среди Тихого океана экипаж бременского судна «Матадор» был напуган видением. Около полуночи экипаж заметил приблизительно в двух милях (3,2 км) судно, которое боролось с сильным штормом.

Это было тем более удивительно, что кругом стоял штиль. Судно пересекало курс «Матадора», и были мгновения, когда казалось, что столкновение кораблей неизбежно... Экипаж «Матадора» видел, как во время одного сильного удара волны о неизвестное судно в каюте капитана потух свет, который виднелся все время в двух иллюминаторах. Через некоторое время судно исчезло, унося с собою ветер и волны.

Дело разъяснилось позже. Оказалось, что все это происходило с другим судном, которое во время «видения» находилось от «Матадора» на расстоянии 1700 км.

Какими же путями проходит свет в атмосфере так, что сохраняются отчетливые изображения предметов на столь больших расстояниях? Точного ответа на этот вопрос пока нет. Высказывались предположения об образовании в атмосфере гигантских воздушных линз, опоздании вторичного миража, т. е. миража от миража. Возможно, что здесь играет роль ионосфера *, отражающая не только радиоволны, но и световые волны.

Видимо, описанные явления имеют такое же происхождение, как и другие наблюдаемые на морях миражи, носящие название «Летучего голландца» или «Фата Моргана», когда моряки видят призрачные суда, исчезающие затем и наводящие страх на суеверных людей.

РАДУГА

Радуга - это красивое небесное явление - всегда привлекала внимание человека. В прежние времена, когда люди еще очень мало знали об окружающем их мире, радугу считали «небесным знамением». Так, древние греки думали, что радуга - это улыбка богини Ириды.

Радуга наблюдается в стороне, противоположной Солнцу, на фоне дождевых облаков или дождя. Разноцветная дуга обычно находится от наблюдателя на расстоянии 1-2 км, иногда ее можно наблюдать на расстоянии 2-3 м на фоне водяных капель, образованных фонтанами или распылителями воды.

Центр радуги находится на продолжении прямой, соединяющей Солнце и глаз наблюдателя, - на противосолнечной линии. Угол между направлением на главную радугу и противосолнечной линией составляет 41-42° (рис. 28).


В момент восхода солнца противосолнечная точка (точка М) находится на линии горизонта и радуга имеет вид полуокружности. По мере поднятия Солнца противосолнечная точка опускается под горизонт и размер радуги уменьшается. Она представляет собой лишь часть окружности. Для наблюдателя, находящегося высоко, например на. самолете, радуга видна как полная окружность с тенью наблюдателя в центре.

Часто наблюдается побочная радуга, концентрическая с первой, с угловым радиусом около 52° и обратным расположением цветов.

При высоте Солнца 41° главная радуга перестает быть видимой и над горизонтом выступает лишь часть побочной радуги, а при высоте Солнца больше 52° не видна и побочная радуга. Поэтому в средних и экваториальных широтах в околополуденные часы это явление природы никогда не наблюдается.

У радуги, как и у спектра, различают семь основных цветов, плавно переходящих один в другой. Вид дуги, яркость цветов, ширина полос зависят от размеров капелек воды и их количества. Большие капли создают радугу более узкую, с резко выделяющимися цветами, малые - дугу расплывчатую, блеклую и даже белую. Вот почему яркая узкая радуга видна летом после грозового дождя, во время которого падают крупные капли.

Впервые теория радуги была дана в 1637 г. Р. Декартом. Он объяснил радугу как явление, связанное с отражением и преломлением света в дождевых каплях.

Образование цветов и их последовательность были объяснены позже, после разгадки сложной природы белого света и его дисперсии в среде. Дифракционная теория радуги разработана Эри и Пертнером.

Рассмотрим простейший случаи: пусть на каплюу имеющую форму шара, падает пучок параллельных солнечных лучей (рис. 29). Луч, падающий на поверхность капли в точке А, преломляется внутри нее по закону преломления: n 1 sin a = п 2 sin β, где n 1 = 1, n 2 ≈ 1,33- соответственно показатели преломления воздуха и воды, a - угол падения, β - угол преломления света.

Внутри капли луч идет по прямой АВ. В точке В происходит частичное преломление луча и частичное его отражение. Заметим, что, чем меньше угол падения в точке В, а следовательно, и в точке А, тем меньше интенсивность отраженного луча и тем больше интенсивность преломленного луча.

Луч АВ после отражения в точке В проходит под углом β 1 " = β 1 попадает в точку С, где также происходит частичное отражение и частичное преломление света. Преломленный луч выходит из капли под углом у2, а отраженный может пройти дальше, в точку D и т. д. Таким образом, луч света в капле претерпевает многократное отражение и преломление. При каждом отражении некоторая часть лучей света выходит наружу и интенсивность их внутри капли уменьшается. Наиболее интенсивным из выходящих в воздух лучей является луч, вышедший из капли в точке В. Однако наблюдать его трудно, так как он теряется на фоне ярких прямых солнечных лучей. Лучи же, преломленные в точке С, создают в совокупности на фоне темной тучи первичную радугу, а лучи, испытывающие преломление в точке D

дают вторичную радугу, которая, как следует из сказанного, менее интенсивна, чем первичная.

Для случая К=1 получаем Θ = 2 (59°37" - 40°26") + 1 = 137° 30".

Следовательно, угол наблюдения радуги первого порядка равен:

φ 1 =180° - 137°30" = 42°30"

Для луча DE" дающего радугу второго порядка, т. е. в случае К = 2, имеем:

Θ = 2 (59°37" - 40°26") + 2 = 236°38".

Угол наблюдения радуги второго порядка φ 2 = 180° - 234°38" = - 56°38".

Отсюда следует (это видно и из рисунка), что в рассматриваемом случае радуга второго порядка с земли не видна. Для того чтобы она была видна, свет должен входить в каплю снизу (рис. 30, б).

При рассмотрении образования радуги нужно учесть еще одно явление - неодинаковое преломление волн света различной длины, т. е. световых лучей разного цвета. Это явление носит название дисперсии. Вследствие дисперсии углы преломления ϒ и углы отклонения лучей Θ в капле различны для лучей различной окраски. Ход трех лучей - красного, зеленого и фиолетового - схематически показан на рисунке 30, а для дуги первого порядка и на рисунке 30, б для дуги второго порядка.

Из рисунков видно, что последовательность цветов в этих дугах противоположна.

Чаще всего мы наблюдаем одну радугу. Нередки, случаи, когда на небосводе появляются одновременно две радужные полосы, расположенные одна над другой; наблюдают, правда, довольно редко, и еще большее число радужных небесных дуг - три, четыре и даже пять одновременно. Это интересное явление наблюдали ленинградцы 24 сентября 1948 г., когда во второй половине дня среди туч над Невой появились четыре радуги. Оказывается, что радуга может возникать не только от прямых солнечных лучей; нередко она появляется и в отраженных лучах Солнца. Это можно видеть на берегу морских заливов, больших рек и озер. Три-четыре такие радуги - обыкновенные и отраженные - создают подчас красивую картину. Так как отраженные от водной поверхности лучи Солнца идут снизу вверх, то радуга, образующаяся в этих лучах, может выглядеть иногда совершенно необычно.

Не следует думать, что радугу можно наблюдать только днем. Она бывает и ночью, правда, всегда слабая. Увидеть такую радугу можно после ночного дождя, когда из-за туч выглянет Луна.

Некоторое подобие радуги можно получить на следующем опыте. Возьмите колбу с водой, осветите ее солнечным светом или лампой через отверстие в белой доске. Тогда на доске отчетливо станет видна радуга (рис. 31, а), причем угол расхождения лучей по сравнению с начальным направлением составит около 41-42° (рис. 31,6). В естественных условиях экрана нет, изображение возникает на сетчатке глаза, и глаз проецирует это изображение на облака.

Если радуга появляется вечером перед заходом Солнца, то наблюдают красную радугу. В последние пять или десять минут перед закатом солнца все цвета радуги, кроме красного, исчезают, она становится очень яркой и видимой даже спустя десять минут после заката.

Красивое зрелище представляет собой радуга на росе.

Ее можно наблюдать при восходе Солнца на траве, покрытой росой. Эта радуга имеет форму гиперболы.

НИМБЫ

Рассматривая радугу на лугу, вы невольно заметите удивительный неокрашенный световой ореол - нимб, окружающий тень вашей головы. Это не оптическая иллюзия и не явление контраста. Когда тень падает на дорогу, ореол исчезает. Каково же объяснение этого интересного явления? Капли росы определенно играют здесь важную роль, ибо при исчезании росы исчезает явление.

Для выяснения причины явления проделайте следующий опыт. Возьмите сферическую колбу с водой и поставьте ее на солнечный свет. Пусть она изображает каплю. Поместите позади колбы близко к ней лист бумаги, который будет играть роль травы. Посмотрите на колбу под малым углом по отношению к направлению падающих лучей. Вы увидите ее ярко освещенной лучами, отраженными от бумаги. Лучи эти идут почти точно навстречу лучам Солнца, падающим на колбу. Чуть в сторону отведите глаза, и яркого освещения колбы уже не видно.

Здесь мы имеем дело не с рассеянным, а с направленным пучком света, исходящим от яркого пятна на бумаге. Колба действует как линза, направляющая свет на нас.

Пучок параллельных солнечных лучей после преломления в колбе дает на бумаге более или менее фокусированное изображение Солнца в виде яркого пятна. В свою очередь довольно много света, излучаемого пятном, захватывается колбой и после преломления в ней направляется назад в сторону Солнца, в том числе в наши глаза, так как мы стоим спиной к Солнцу. Оптические недостатки нашей линзы - колбы дают некоторый рассеянный световой поток, но все же основной поток света, исходящего от яркого пятна на бумаге, направлен в сторону Солнца. Но почему же свет, отраженный от травинок, не зеленый?


Он в действительности имеет слабый зеленоватый оттенок, но в основном он белый, так же как свет, направленно отраженный от гладких окрашенных поверхностей, как, например, блики от зеленой или желтой классной доски, от цветного стекла.

Но капельки росы не всегда шарообразны. Они могут быть искаженными. Тогда некоторые из них направляют свет в сторону, но он проходит мимо глаз. Другие же капельки, как, например, изображенные на рисунке 33, имеют такую форму, что упавший на них свет после одно-или двукратного отражения направляется обратно в сторону Солнца и попадает в глаза наблюдателя, стоящего к нему спиной.

Наконец следует отметить еще одно остроумное объяснение этого явления: направленно отражают свет только те листья травы, на которые падает прямой свет Солнца, т. е. те, которые со стороны Солнца не заслонены другими листьями. Если учесть, что листья большинства растений всегда поворачиваются своей плоскостью к Солнцу, то очевидно, что таких отражающих листьев окажется довольно много (рис. 33, д). Поэтому нимбы можно также наблюдать и в отсутствие росы, на поверхности гладко скошенного луга или сжатого поля.

Явление преломления света было известно еще Аристотелю. Птолемей сделал попытку установить закон количественно, измеряя углы падения и преломления света. Однако ученый сделал неверный вывод о том, что угол преломления пропорционален углу падения. После него было сделано еще несколько попыток установления закона,успешнойстала попытка голландского ученого Снеллиуса в 17 веке.

Закон преломления света является одним из четырех основных законов оптики, которые были эмпирически открыты еще до установления природы света. Это законы:

  1. прямолинейного распространения света;
  2. независимости пучков света;
  3. отражения света от зеркальной поверхности;
  4. преломление света на границе двух прозрачных веществ.

Все данные законы ограничены в применении и являются приближенными. Выяснение границ и условий применимости этих законов имеет большое значение в установлении природы света.

Формулировка закона

Падающий луч света, преломленный луч и перпендикуляр к границе раздела двух прозрачных сред лежат в одной плоскости (рис.1). При этом угол падения () и угол преломления () связаны соотношением:

где — постоянная величина, не зависящая от углов , которая называется показателем преломления. Если быть более точным, то в выражении (1) используют относительный показатель преломления вещества, в котором распространяется преломленный свет, относительно среды, в которой распространялась падающая волна света:

где — абсолютный показатель преломления второй среды, — абсолютный показатель преломления первого вещества; — фазовая скорость распространения света в первой среде; — фазовая скорость распространения света вовтором веществе. В том случае, если title="Rendered by QuickLaTeX.com" height="16" width="60" style="vertical-align: -4px;">, то вторая среда считается оптически более плотной, чем первая.

Учитывая выражение (2) закон преломления иногда записывают как:

Из симметрии выражения (3) следует обратимость лучей света. Если обратить преломленный луч (рис.1), и заставить его падать на границу раздела под углом , то в среде (1) он будет идти в обратном направлении вдоль падающего луча.

В том случае, если световая волна распространяется из вещества с большим показателем преломления в среде с меньшим показателем преломления, то угол преломления будет больше, чем угол падения.

При увеличении угла падения увеличивается и угол преломления. Это происходит до тех пор, пока при некотором угле падения, который называют предельным (), угол преломления не станет равен 900. Если угол падения больше предельного угла (), то весь падающий свет отражается от границы раздела.Для предельного угла падения выражение (1) трансформируется в формулу:

где уравнение (4) удовлетворяет величинам угла при Это означает, что явление полного отражения возможно при попадании света из вещества оптически более плотного в вещество оптически менее плотное.

Условия применимости закона преломления

Закон преломления света называют законом Снеллиуса. Он выполняется для монохроматического света, длина волны которого много больше, чем межмолекулярные расстояния среды, в которой он распространяется.

Закон преломления нарушается, если размер поверхности, которая разделяет две среды, мал и возникает явление дифракции. Кроме этого закон Снеллиуса не выполняется, если проявляются нелинейные явления, которые могут возникать при больших интенсивностях света.

Примеры решения задач

ПРИМЕР 1

Задание Каков показатель преломления жидкости (), если луч света, падая на границу стекло — жидкость испытывает полное отражение? При этом предельный угол полного отражения равен , показатель преломления стекла равен
Решение Основой для решения задачи служит закон Снеллиуса, который запишем в виде:

Выразим из формулы (1.1) искомую величину (), получим:

Проведем вычисления:

Ответ

ПРИМЕР 2

Задание Между двумя прозрачными пластинками с показателями преломления и находится слой прозрачного вещества с показателем преломления (рис.2). Луч света падает на границу раздела первая пластинка — вещество под углом ( меньше предельного). Переходя из слоя вещества во вторую пластинку, он падает на нее под углом . Покажите, что луч преломляется в такой системе, как будто прослойки между пластинами не существует.
  • Углом падения α называется угол между падающим лучом света и перпендикуляром к границе раздела двух сред, восстановленным в точке падения (рис. 1).
  • Углом отражения β называется угол между отраженным лучом света и перпендикуляром к отражающей поверхности, восстановленным в точке падения (см. рис. 1).
  • Углом преломления γ называется угол между преломленным лучом света и перпендикуляром к границе раздела двух сред, восстановленным в точке падения (см. рис. 1).
  • Под лучом понимают линию, вдоль которой переносится энергия электромагнитной волны. Условимся изображать оптические лучи графически с помощью геометрических лучей со стрелками. В геометрической оптике волновая природа света не учитывается (см. рис. 1).
  • Лучи, выходящие из одной точки, называют расходящимися , а собирающиеся в одной точке - сходящимися . Примером расходящихся лучей может служить наблюдаемый свет далеких звезд, а примером сходящихся - совокупность лучей, попадающих в зрачок нашего глаза от различных предметов.

При изучении свойств световых лучей были экспериментально установлены четыре основных закона геометрической оптики:

  • закон прямолинейного распространения света;
  • закон независимости световых лучей;
  • закон отражения световых лучей;
  • закон преломления световых лучей.

Преломление света

Измерения показали, что скорость света в веществе υ всегда меньше скорости света в вакууме c .

  • Отношение скорости света в вакууме c к ее скорости в данной среде υ называется абсолютным показателем преломления :

\(n=\frac{c}{\upsilon }.\)

Словосочетание «абсолютный показатель преломления среды » часто заменяют «показатель преломления среды ».

Рассмотрим луч, падающий на плоскую границу раздела двух прозрачных сред с показателями преломления n 1 и n 2 под некоторым углом α (рис. 2).

  • Изменение направления распространения луча света при прохождении через границу раздела двух сред называется преломлением света .

Законы преломления:

  • отношение синуса угла падения α к синусу угла преломления γ есть величина постоянная для двух данных сред

\(\frac{sin \alpha }{sin \gamma }=\frac{n_2}{n_1}.\)

  • лучи, падающий и преломленный, лежат в одной плоскости с перпендикуляром, проведенным в точке падения луча к плоскости границы раздела двух сред.

Для преломления выполняется принцип обратимости световых лучей :

  • луч света, распространяющийся по пути преломленного луча, преломившись в точке O на границе раздела сред, распространяется дальше по пути падающего луча.

Из закона преломления следует, что если вторая среда оптически более плотная через первая среда,

  • т.е. n 2 > n 1 , то α > γ \(\left(\frac{n_2}{n_1} > 1, \;\;\; \frac{sin \alpha }{sin \gamma } > 1 \right)\) (рис. 3, а);
  • если n 2 < n 1 , то α < γ (рис. 3, б).
Рис. 3

Первые упоминания о преломлении света в воде и стекле встречаются в труде Клавдия Птолемея «Оптика», вышедшего в свет во II веке нашей эры. Закон преломления света был экспериментально установлен в 1620 г. голландским ученым Виллебродом Снеллиусом. Заметим, что независимо от Снеллиуса закон преломления был также открыт Рене Декартом.

Закон преломления света позволяет рассчитывать ход лучей в различных оптических системах.

На границе раздела двух прозрачных сред обычно одновременно с преломлением наблюдается отражение волн. Согласно закону сохранения энергии сумма энергий отраженной W o и преломленной W np волн равна энергии падающей волны W n:

W n = W np + W o .

Полное отражение

Как уже говорилось выше, при переходе света из оптически более плотной среды в оптически менее плотную среду (n 1 > n 2), угол преломления γ становится больше угла падения α (см. рис. 3, б).

По мере увеличения угла падения α (рис. 4), при некотором его значении α 3 , угол преломления станет γ = 90°, т. е. свет не будет попадать во вторую среду. При углах больших α 3 свет будет только отражаться. Энергия преломленной волны W np при этом станет равной нулю, а энергия отраженной волны будет равна энергии падающей: W n = W o . Следовательно, начиная с этого угла падения α 3 (в дальнейшем будет обозначать его α 0), вся световая энергия отражается от границы раздела этих сред.

Это явление получило название полное отражение (см. рис. 4).

  • Угол α 0 , при котором начинается полное отражение, называется предельным углом полного отражения .

Значение угла α 0 определяется из закона преломления при условии, что угол преломления γ = 90°:

\(\sin \alpha_{0} = \frac{n_{2}}{n_{1}} \;\;\; \left(n_{2} < n_{1} \right).\)

Литература

Жилко, В.В. Физика: учеб. Пособие для 11 класса общеобразоват. шк. с рус. яз. обучения / В.В.Жилко, Л.Г.Маркович. - Минск: Нар. Асвета, 2009. - С. 91-96.

На границе раздела двух прозрачных сред наряду с отражением света наблюдается его преломление свет, переходя в другую среду, меняет направление своего распространения.

Преломление светового луча происходит при его наклонном падении на поверхность раздела (правда, не всегда читайте дальше про полное внутреннее отражение). Если же луч падает перпендикулярно поверхности, то преломления не будет во второй среде луч сохранит своё направление и также пойдёт перпендикулярно поверхности.

4.3.1 Закон преломления (частный случай)

Мы начнём с частного случая, когда одна из сред является воздухом. Именно такая ситуация присутствует в подавляющем большинстве задач. Мы обсудим соответствующий частный случай закона преломления, а уж затем дадим самую общую его формулировку.

Предположим, что луч света, идущий в воздухе, наклонно падает на поверхность стекла, воды или какой-либо другой прозрачной среды. При переходе в среду луч преломляется, и его дальнейший ход показан на рис.4.11 .

Среда O

Рис. 4.11. Преломление луча на границе ¾воздух–среда¿

В точке падения O проведён перпендикуляр (или, как ещё говорят, нормаль) CD к поверхности среды. Луч AO, как и раньше, называется падающим лучом, а угол между падающим лучом и нормалью углом падения. Луч OB это преломлённый луч; угол между преломлённым лучом и нормалью к поверхности называется углом преломления.

Всякая прозрачная среда характеризуется величиной n, которая называется показателем преломления этой среды. Показатели преломления различных сред можно найти в таблицах. Например, для стекла n = 1;6, а для воды n = 1;33. Вообще, у любой среды n > 1; показатель преломления равен единице только в вакууме. У воздуха n = 1;0003, поэтому для воздуха с достаточной точностью можно полагать в задачах n = 1 (в оптике воздух не сильно отличается от вакуума).

Закон преломления (переход ¾воздух–среда¿).

1) Падающий луч, преломлённый луч и нормаль к поверхности, проведённая в точке падения, лежат в одной плоскости.

2) Отношение синуса угла падения к синусу угла преломления равно показателю преломле-

ния среды:

Поскольку n > 1, из соотношения (4.1 ) следует, что sin > sin , то есть > угол преломления меньше угла падения. Запоминаем: переходя из воздуха в среду, луч после преломления идёт ближе к нормали.

Показатель преломления непосредственно связан со скоростью v распространения света в данной среде. Эта скорость всегда меньше скорости света в вакууме: v < c. И вот оказывается,

Почему так получается, мы с вами поймём при изучении волновой оптики. А пока скомби-

нируем формулы (4.1 ) и (4.2 ):

Так как показатель преломления воздуха очень близок единице, мы можем считать, что скорость света в воздухе примерно равна скорости света в вакууме c. Приняв это во внимание и глядя на формулу (4.3 ), делаем вывод: отношение синуса угла падения к синусу угла преломления равно отношению скорости света в воздухе к скорости света в среде.

4.3.2 Обратимость световых лучей

Теперь рассмотрим обратный ход луча: его преломление при переходе из среды в воздух. Здесь нам окажет помощь следующий полезный принцип.

Принцип обратимости световых лучей. Траектория луча не зависит от того, в прямом или обратном направлении распространяется луч. Двигаясь в обратном направлении, луч пойдёт в точности по тому же пути, что и в прямом направлении.

Согласно принципу обратимости, при переходе из среды в воздух луч пойдёт по той же самой траектории, что и при соответствующем переходе из воздуха в среду (рис. 4.12 ) Единственное отличие рис.4.12 от рис.4.11 состоит в том, что направление луча поменялось на противоположное.

Среда O

Рис. 4.12. Преломление луча на границе ¾среда–воздух¿

Раз геометрическая картинка не изменилась, той же самой останется и формула (4.1 ): отношение синуса угла к синусу угла по-прежнему равно показателю преломления среды. Правда, теперь углы поменялись ролями: угол стал углом падения, а угол углом преломления.

В любом случае, как бы ни шёл луч из воздуха в среду или из среды в воздух работает следующее простое правило. Берём два угла угол падения и угол преломления; отношение синуса большего угла к синусу меньшего угла равно показателю преломления среды.

Теперь мы целиком подготовлены для того, чтобы обсудить закон преломления в самом общем случае.

4.3.3 Закон преломления (общий случай)

Пусть свет переходит из среды 1 с показателем преломления n1 в среду 2 с показателем преломления n2 . Среда с б´ольшим показателем преломления называется оптически более плотной; соответственно, среда с меньшим показателем преломления называется оптически менее плотной.

Переходя из оптически менее плотной среды в оптически более плотную, световой луч после преломления идёт ближе к нормали (рис. 4.13 ). В этом случае угол падения больше угла преломления: > .

Рис. 4.13. n1 < n2 ) >

Наоборот, переходя из оптически более плотной среды в оптически менее плотную, луч отклоняется дальше от нормали (рис. 4.14 ). Здесь угол падения меньше угла преломления:

Рис. 4.14. n1 > n2 ) <

Оказывается, оба этих случая охватываются одной формулой общим законом преломления, справедливым для любых двух прозрачных сред.

Закон преломления.

1) Падающий луч, преломлённый луч и нормаль к поверхности раздела сред, проведённая

в точке падения, лежат в одной плоскости.

2) Отношение синуса угла падения к синусу угла преломления равно отношению показателя преломления второй среды к показателю преломления первой среды:

Нетрудно видеть, что сформулированный ранее закон преломления для перехода ¾воздух– среда¿ является частным случаем данного закона. В самом деле, полагая в формуле (4.4 ) n1 = 1 и n2 = n, мы придём к формуле (4.1 ).

Вспомним теперь, что показатель преломления это отношение скорости света в вакууме к скорости света в данной среде: n1 = c=v1 , n2 = c=v2 . Подставляя это в (4.4 ), получим:

Формула (4.5 ) естественным образом обобщает формулу (4.3 ). Отношение синуса угла падения к синусу угла преломления равно отношению скорости света в первой среде к скорости света во второй среде.

4.3.4 Полное внутреннее отражение

При переходе световых лучей из оптически более плотной среды в оптически менее плотную наблюдается интересное явление полное внутреннее отражение. Давайте разберёмся, что это такое.

Будем считать для определённости, что свет идёт из воды в воздух. Предположим, что в глубине водоёма находится точечный источник света S, испускающий лучи во все стороны. Мы рассмотрим некоторые из этих лучей (рис. 4.15 ).

S B 1

Рис. 4.15. Полное внутреннее отражение

Луч SO1 падает на поверхность воды под наименьшим углом. Этот луч частично преломляется (луч O1 A1 ) и частично отражается назад в воду (луч O1 B1 ). Таким образом, часть энергии падающего луча передаётся преломлённому лучу, а оставшаяся часть энергии отражённому лучу.

Угол падения луча SO2 больше. Этот луч также разделяется на два луча преломлённый и отражённый. Но энергия исходного луча распределяется между ними по-другому: преломлённый луч O2 A2 будет тусклее, чем луч O1 A1 (то есть получит меньшую долю энергии), а отражённый луч O2 B2 соответственно ярче, чем луч O1 B1 (он получит б´ольшую долю энергии).

По мере увеличения угла падения прослеживается та же закономерность: всё б´ольшая доля энергии падающего луча достаётся отражённому лучу, и всё меньшая преломлённому лучу. Преломлённый луч становится всё тусклее и тусклее, и в какой-то момент исчезает совсем!

Это исчезновение происходит при достижении угла падения 0 , которому отвечает угол преломления 90 . В данной ситуации преломлённый луч OA должен был бы пойти параллельно поверхности воды, да идти уже нечему вся энергия падающего луча SO целиком досталась отражённому лучу OB.

При дальнейшем увеличении угла падения преломлённый луч и подавно будет отсутствовать.

Описанное явление и есть полное внутреннее отражение. Вода не выпускает наружу лучи с углами падения, равными или превышающими некоторое значение 0 все такие лучи целиком отражаются назад в воду. Угол0 называется предельным углом полного отражения.

Величину 0 легко найти из закона преломления. Имеем:

sin 0

Но sin 90 = 1, поэтому

sin 0

0 = arcsin

Так, для воды предельный угол полного отражения равен:

0 = arcsin1; 1 33 48;8:

Явление полного внутреннего отражения вы легко можете наблюдать дома. Налейте воду в стакан, поднимите его и смотрите на поверхность воды чуть снизу сквозь стенку стакана. Вы увидите серебристый блеск поверхности вследствие полного внутреннего отражения она ведёт себя подобно зеркалу.

Важнейшим техническим применением полного внутреннего отражения является волоконная оптика. Световые лучи, запущенные внутрь оптоволоконного кабеля (световода) почти параллельно его оси, падают на поверхность под большими углами и целиком, без потери энергии отражаются назад внутрь кабеля. Многократно отражаясь, лучи идут всё дальше и дальше, перенося энергию на значительное расстояние. Волоконно-оптическая связь применяется, например, в сетях кабельного телевидения и высокоскоростного доступа в Интернет.

 

Возможно, будет полезно почитать: