Большая энциклопедия нефти и газа. Что такое цианистый калий

«Я достал из поставца шкатулку с цианистым калием и положил ее на стол рядом с пирожными. Доктор Лазаверт надел резиновые перчатки, взял из нее несколько кристалликов яда, истер в порошок. Затем снял верхушку пирожных, посыпал начинку порошком в количестве, способном, по его словам, убить слона. В комнате царило молчанье. Мы взволнованно следили за его действиями. Осталось положить яд в бокалы. Решили класть в последний момент, чтобы отрава не улетучилась...»

Это не отрывок детективного романа, а слова принадлежат не вымышленному персонажу. Здесь приведены воспоминания князя Феликса Юсупова о подготовке одного из известнейших в российской истории преступлений - убийства Григория Распутина. Произошло оно в 1916 году. Если до середины XIX века главным помощником отравителей был мышьяк, то после внедрения в криминалистическую практику метода Марша (см. статью «Мышь, мышьяк и Кале-сыщик» , «Химия и жизни», № 2, 2011) к мышьяку прибегали всё реже. Зато все чаще стал использоваться цианид калия, или цианистый калий (цианистый кали, как его называли раньше).

Что это такое...

Цианид калия - это соль циановодородной, или синильной, кислоты Н–СN, его состав отражает формула KCN. Синильную кислоту в виде водного раствора впервые получил шведский химик Карл Вильгельм Шееле в 1782 году из желтой кровяной соли K 4 . Читатель уже знает, что Шееле разработал первый метод качественного определения мышьяка (см. «Мышь, мышьяк и Кале-сыщик»). Он же открыл химические элементы хлор, марганец, кислород, молибден и вольфрам, получил мышьяковую кислоту и арсин, оксид бария и другие неорганические вещества. Свыше половины известных в XVIII веке органических соединений также выделил и описал Карл Шееле.

Безводную синильную кислоту получил в 1811 году Жозеф Луи Гей-Люссак. Он же установил ее состав. Циановодород - это бесцветная летучая жидкость, закипающая при температуре 26°C. Корень «циан» в его названии (от греч. - лазурный) и корень русского названия «синильная кислота» сходны по смыслу. Это не случайно. Ионы CN – образуют с ионами железа соединения синего цвета, в том числе состава KFe. Это вещество используется в качестве пигмента гуаши, акварельных и прочих красок под названиями «берлинская лазурь», «милори», «прусская синяя». Возможно, вам эти краски знакомы по наборам гуаши или акварели.

Авторы детективов дружно утверждают, что синильная кислота и ее соли имеют «запах горького миндаля». Конечно, синильную кислоту они не нюхали (равно как и автор этой статьи). Информация о «запахе горького миндаля» почерпнута из справочников и энциклопедий. Есть и другие мнения. Автор «Химии и жизни» А. Клещенко, окончивший химический факультет МГУ и знакомый с синильной кислотой не понаслышке, в статье «Как отравить героя» («Химия и жизнь», 1999, № 2) пишет, что запах синильной кислоты не похож на миндальный.

Авторы детективов пали жертвами давнего заблуждения. Но с другой стороны, справочник «Вредные химические вещества» тоже специалисты составляли. Можно было бы, в конце концов, получить синильную кислоту и понюхать ее. Но что-то страшновато!

Остается предположить, что восприятие запахов - дело индивидуальное. И то, что одному напоминает запах миндаля, для другого не имеет с миндалем ничего общего. Эту мысль подтверждает Питер Макиннис в книге «Тихие убийцы. Всемирная история ядов и отравлений»: «В детективных романах непременно упоминается аромат горького миндаля, который связан с цианистым натрием, цианистым калием и цианистым водородом (синильной кислотой), однако лишь 40–60 процентов обычных людей способны хотя бы почувствовать этот специфический запах». Тем более что житель средней полосы России с горьким миндалем, как правило, не знаком: его семена, в отличие от сладкого миндаля, в пищу не употребляют и в продажу не поступают.

...и зачем его едят?

К миндалю и его запаху вернемся позже. А сейчас - о цианистом калии. В 1845 году немецкий химик Роберт Бунзен, один из авторов метода спектрального анализа, получил цианид калия и разработал способ его промышленного производства. Если сегодня это вещество находится в химических лабораториях и на производстве под строгим контролем, то на рубеже XIX и XX веков цианистый калий был доступен любому (включая злоумышленников). Так, в рассказе Агаты Кристи «Осиное гнездо» цианистый калий купили в аптеке якобы для уничтожения ос. Преступление сорвалось только благодаря вмешательству Эркюля Пуаро.

Энтомологи использовали (и до сих пор используют) небольшие количества цианида калия в морилках для насекомых. Несколько кристаллов яда кладут на дно морилки и заливают гипсом. Цианид медленно реагирует с углекислым газом и парами воды, выделяя циановодород. Насекомые вдыхают отраву и погибают. Заправленная таким образом морилка действует более года. Нобелевский лауреат Лайнус Полинг рассказывал, как его снабжал цианистым калием для изготовления морилок завхоз стоматологического колледжа. Он же и научил мальчика обращаться с этим опасным веществом. Дело было в 1912 году. Как видим, в те годы к хранению «короля ядов» относились довольно легкомысленно.

Откуда у цианистого калия такая популярность среди преступников настоящих и вымышленных? Причины понять нетрудно: вещество хорошо растворимо в воде, не обладает выраженным вкусом, летальная (смертельная) доза невелика - в среднем достаточно 0,12 г, хотя индивидуальная восприимчивость к яду, конечно, различается. Высокая доза цианида калия вызывает почти мгновенную потерю сознания, а затем паралич дыхания. Добавим сюда доступность вещества в начале XIX века, и выбор заговорщиков-убийц Распутина становится понятным.

Синильная кислота так же ядовита, как и цианиды, но неудобна в применении: имеет специфический запах (у цианидов он очень слаб) и не может быть использована незаметно для жертвы, к тому же из-за высокой летучести опасна для всех окружающих, а не только для того, кому она предназначена. Но и она находила применение как отравляющее вещество. Во времена Первой мировой войны синильная кислота была на вооружении французской армии. В некоторых штатах США ее использовали для казни преступников в «газовых комнатах». Применяется она также и для обработки вагонов, амбаров, судов, заселенных насекомыми, - принцип тот же, что и у морилки юного Полинга.

Как он действует?

Пора разобраться, как же действует такое нехитрое по составу вещество на организм. Еще в 60-х годах XIX века было установлено, что венозная кровь отравленных цианидами животных имеет алый цвет. Это свойственно, если вы помните, артериальной крови, богатой кислородом. Значит, отравленный цианидами организм не способен усваивать кислород. Синильная кислота и цианиды каким-то образом тормозят процесс тканевого окисления. Оксигемоглобин (соединение гемоглобина с кислородом) впустую циркулирует по организму, не отдавая кислород тканям.

Причину этого явления разгадал немецкий биохимик Отто Варбург в конце 20-х годов ХХ века. При тканевом дыхании кислород должен принять электроны от вещества, подвергающегося окислению. В процессе передачи электронов участвуют ферменты под общим название «цитохромы». Это белковые молекулы, содержащие небелковый геминовый фрагмент, связанный с ионом железа. Цитохром, содержащий ион Fe 3+ , принимает электрон от окисляемого вещества и превращается в ион Fe 2+ . Тот, в свою очередь, передает электрон молекуле следующего цитохрома, окисляясь до Fe 3+ . Так электрон передается по цепи цитохромов, подобно мячу, который «цепочка баскетболистов передает от одного игрока к другому, неумолимо приближая его к корзине (кислороду)». Так описал работу ферментов тканевого окисления английский биохимик Стивен Роуз. Последний игрок в цепочке, тот, который забрасывает мяч в кислородную корзину, называется цитохромоксидазой. В окисленной форме он содержит ион Fe 3+ . Эта форма цитохромоксидазы и служит мишенью для цианид-ионов, которые могут образовывать ковалентные связи с катионами металлов и предпочитают именно Fe 3+ .

Связывая цитохромоксидазу, цианид-ионы выводят молекулы этого фермента из окислительной цепи, и передача электрона кислороду срывается, то есть кислород клеткой не усваивается. Был обнаружен интересный факт: ежики, находящиеся в зимней спячке, способны переносить дозы цианида, во много раз превосходящие смертельную. А причина в том, что при низкой температуре усвоение кислорода организмом замедляется, как и все химические процессы. Поэтому уменьшение количества фермента переносится легче.

У читателей детективов иногда возникает представление, что цианистый калий - самое ядовитое вещество на Земле. Вовсе нет! Никотин и стрихнин (вещества растительного происхождения) в десятки раз более ядовиты. О мере ядовитости можно судить по массе токсина на 1 кг веса лабораторного животного, которая требуется для наступления смерти в 50% случаев (LD 50). Для цианида калия она равна 10 мг/кг, а для никотина - 0,3. Далее идут: диоксин, яд искусственного происхождения - 0,022 мг/кг; тетродотоксин, выделяемый рыбой фугу, - 0,01 мг/кг; батрахотоксин, выделяемый колумбийской древесной лягушкой, - 0,002 мг/кг; рицин, содержащийся в семенах клещевины, - 0,0001 мг/кг (подпольную лабораторию террористов по изготовлению рицина раскрыли британские спецслужбы в 2003 году); β-бунгаротоксин, яд южноазиатской змеи бунгарос, - 0,000019 мг/кг; токсин столбняка - 0,000001 мг/кг.

Наиболее ядовит ботулинический токсин (0,0000003 мг/кг), который вырабатывается бактериями определенного вида, развивающимися в анаэробных условиях (без доступа воздуха) в консервах или колбасе. Разумеется, сначала они должны туда попасть. И время от времени попадают, особенно в консервы домашнего производства. Домашняя колбаса сейчас встречается редко, а когда-то именно она нередко была источником ботулизма. Даже название болезни и ее возбудителя произошло от латинского botulus - «колбаса». Ботулиническая бацилла в процессе жизнедеятельности выделяет не только токсин, но и газообразные вещества. Поэтому вздувшиеся консервные банки не стоит вскрывать.

Ботулинический токсин - нейротоксин. Он нарушает работу нервных клеток, которые передают импульс к мышцам. Мышцы перестают сокращаться, наступает паралич. Но если взять токсин в низкой концентрации и воздействовать точечно на определенные мышцы, организм в целом не пострадает, зато мышца окажется расслабленной. Препарат и называется «ботокс» (ботулинический токсин), это и лекарство при мышечных спазмах, и косметическое средство для разглаживания морщин.

Как видим, самые ядовитые на свете вещества создала природа. Добывать их гораздо сложнее, чем получить нехитрое соединение КСN Понятно, что цианид калия и дешевле, и доступнее.

Однако не всегда применение цианистого калия в преступных целях дает гарантированный результат. Посмотрим, что пишет Феликс Юсупов о событиях, происходивших в подвале на Мойке студеной декабрьской ночью 1916 году:

«...Я предложил ему эклеры с цианистым калием. Он сперва отказался.

Не хочу, - сказал он, - больно сладкие.

Однако взял один, потом еще один. Я смотрел с ужасом. Яд должен был подействовать тут же, но, к изумлению моему, Распутин продолжал разговаривать, как ни в чем не бывало. Тогда я предложил ему наших домашних крымских вин...

Я стоял возле него и следил за каждым его движением, ожидая, что он вот-вот рухнет...

Но он пил, чмокал, смаковал вино, как настоящие знатоки. Ничего не изменилось в лице его. Временами он подносил руку к горлу, точно в глотке у него спазм. Вдруг он встал и сделал несколько шагов. На мой вопрос, что с ним, он ответил:

А ничего. В горле щекотка.

Яд, однако, не действовал. «Старец» спокойно ходил по комнате. Я взял другой бокал с ядом, налил и подал ему.

Он выпил его. Никакого впечатления. На подносе оставался последний, третий бокал.

В отчаянии я налил и себе, чтобы не отпускать Распутина от вина...»

Все напрасно. Феликс Юсупов поднялся к себе в кабинет. «...Дмитрий, Сухотин и Пуришкевич, едва я вошел, кинулись навстречу с вопросами:

Ну что? Готово? Кончено?

Яд не подействовал, - сказал я. Все потрясенно замолчали.

Не может быть! - вскричал Дмитрий.

Доза слоновья! Он все проглотил? - спросили остальные.

Все, - сказал я».

Но все-таки цианид калия оказал некоторое действие на организм старца: «Голову он свесил, дышал прерывисто...

Вам нездоровится? - спросил я.

Да, голова тяжелая и в брюхе жжет. Ну-ка, налей маленько. Авось полегчает».

Действительно, если доза цианида не столь велика, чтобы вызвать мгновенную смерть, на начальной стадии отравления ощущаются царапанье в горле, горький вкус во рту, онемение рта и зева, покраснение глаз, мышечная слабость, головокружение, пошатывание, головная боль, сердцебиение, тошнота, рвота. Дыхание несколько учащенное, затем делается более глубоким. Некоторые из этих симптомов Юсупов заметил у Распутина. Если на этой стадии отравления поступление яда в организм прекращается, симптомы исчезают. Очевидно, отравы оказалось для Распутина маловато. Стоит разобраться в причинах, ведь организаторы преступления рассчитали «слоновью» дозу. Кстати, о слонах. Валентин Катаев в своей книге «Разбитая жизнь, или Волшебный рог Оберона» описывает случай со слоном и цианистым калием.

В дореволюционные времена в одесском цирке-шапито Лорбербаума впал в ярость слон Ямбо. Поведение взбесившегося слона стало опасным, и его решили отравить. Как вы думаете чем? «Его решили отравить цианистым кали, положенным в пирожные, до которых Ямбо был большой охотник», - пишет Катаев. И далее: «Я этого не видел, но живо представил себе, как извозчик подъезжает к балагану Лорбербаума и как служители вносят пирожные в балаган, и там специальная врачебная комиссия... с величайшими предосторожностями, надев черные гуттаперчевые перчатки, при помощи пинцетов начиняют пирожные кристалликами цианистого кали...» Не правда ли, очень напоминает манипуляции доктора Лазоверта? Следует только добавить, что воображаемую картину рисует себе мальчик-гимназист. Не случайно этот мальчик впоследствии стал известным писателем!

Но вернемся к Ямбо:

«О, как живо рисовало мое воображение эту картину... Я стонал в полусне... Тошнота подступала к сердцу. Я чувствовал себя отравленным цианистым кали... Мне казалось, что я умираю... Я встал с постели и первое, что я сделал, это схватил «Одесский листок», уверенный, что прочту о смерти слона. Ничего подобного!

Слон, съевший пирожные, начиненные цианистым кали, оказывается, до сих пор жив-живехонек и, по-видимому, не собирается умирать. Яд не подействовал на него. Слон стал лишь еще более буйным».

О дальнейших событиях, произошедших со слоном и с Распутиным, можно прочитать в книгах. А нас интересуют причины «необъяснимого нонсенса», как писал о случае со слоном «Одесский листок». Таких причин - две.

Во-первых, HCN - очень слабая кислота. Такая кислота может быть вытеснена из своей соли более сильной кислотой и улетучиться. Даже угольная кислота сильнее синильной. А угольная кислота образуется при растворении углекислого газа в воде. То есть под действием влажного воздуха, содержащего и воду, и углекислый газ, цианид калия постепенно превращается в карбонат:

KCN + H 2 O + CO 2 = HCN + KHCO 3

Если цианид калия, который использовали в описанных случаях, долго хранился в контакте с влажным воздухом, он мог и не подействовать.

Во-вторых, соль слабой циановодородной кислоты подвержена гидролизу:

KCN + H 2 O = HCN + КОН.

Выделяющийся циановодород способен присоединяться к молекуле глюкозы и других сахаров, содержащих карбонильную группу:

СН 2 ОН-СНОН-СНОН-СНОН-СНОН-СН=О + HC≡N →
СН 2 ОН-СНОН-СНОН-СНОН-СНОН-СНОН-С≡N

Вещества, образующиеся в результате присоединения циановодорода по карбонильной группе, называют циангидринами. Глюкоза - продукт гидролиза сахарозы. Люди, работающие с цианидами, знают, что для профилактики отравления следует держать за щекой кусочек сахара. Глюкоза связывает цианиды, находящиеся в крови. Та часть яда, которая уже проникла в клеточное ядро, где в митохондриях происходит тканевое окисление, для сахаров недоступна. Если у животного повышенное содержание глюкозы в крови, оно более устойчиво к отравлению цианидами, как, например, птицы. То же наблюдается и у больных сахарным диабетом. При поступлении в организм небольших порций цианидов организм может обезвредить их самостоятельно с помощью глюкозы, содержащейся в крови. А при отравлении в качестве антидота используют 5%-ный или 40%-ный растворы глюкозы, вводимые внутривенно. Но это средство действует медленно.

И для Распутина, и для слона Ямбо цианидом калия начинили пирожные, содержащие сахар. Съедены они были не сразу, а тем временем цианид калия выделил синильную кислоту, и она присоединилась к глюкозе. Часть цианида определенно успела обезвредиться. Добавим, что на сытый желудок отравление цианидами происходит медленнее.

Есть и другие противоядия к цианидам. Во-первых, это соединения, легко отщепляющие серу. В организме содержатся такие вещества - аминокислоты цистеин, глутатион. Они, как и глюкоза, помогают организму справиться с малыми дозами цианидов. Если же доза большая, в кровь или мышцу можно специально ввести 30%-ный раствор тиосульфата натрия Na 2 S 2 O 3 (или Na 2 SO 3 S). Он реагирует в присутствии кислорода и фермента роданазы с синильной кислотой и цианидами по схеме:

2HCN + 2Na 2 S 2 O 3 + О 2 = 2НNCS + 2Na 2 SO 4

При этом образуются тиоцианаты (роданиды), гораздо менее вредные для организма, чем цианиды. Если цианиды и синильная кислота относятся к первому классу опасности, то тиоцианаты - вещества второго класса. Они отрицательно влияют на печень, почки, вызывают гастрит, а также угнетают щитовидную железу. У людей, систематически испытывающих воздействие небольших доз цианидов, возникают заболевания щитовидной железы, вызванные постоянным образованием тиоцианатов из цианидов. Тиосульфат в реакции с цианидами более активен, чем глюкоза, но тоже действует медленно. Обычно его используют в комбинации с другими антицианидами.

Второй тип антидотов против цианидов - это так называемые метгемоглобинобразователи. Название говорит о том, что эти вещества образуют из гемоглобина метгемоглобин (см. «Химию и жизнь», 2010, № 10). Молекула гемоглобина содержит четыре иона Fe 2+ , а в метгемоглобине они окислены до Fe 3+ . Поэтому он не способен обратимо связывать кислород Fe 3+ и не переносит его по организму. Это может произойти под действием веществ-окислителей (среди них оксиды азота, нитраты и нитриты, нитроглицерин и многие другие). Ясно, что это яды, «выводящие из строя» гемоглобин и вызывающие гипоксию (кислородную недостаточность). «Порченный» этими ядами гемоглобин не переносит кислород, но зато способен связывать цианид-ионы, которые испытывают непреодолимое влечение к иону Fe 3+ . Попавший в кровь цианид связывается метгемоглобином и не успевает попасть в митохондрии клеточных ядер, где неизбежно «перепортит» всю цитохромоксидазу. А это гораздо хуже, чем «испорченный» гемоглобин.

Американский писатель, биохимик и популяризатор науки Айзек Азимов объясняет это так: «Дело в том, что в организме имеется очень большое количество гемоглобина... Геминовые же ферменты присутствуют в очень незначительных количествах. Уже нескольких капель цианида оказывается достаточно, чтобы разрушить большую часть этих ферментов. Если это случается, конвейер, окисляющий горючие вещества организма, останавливается. Через несколько минут клетки тела погибают от недостатка кислорода столь же неотвратимо, как если бы кто-нибудь схватил человека за горло и попросту задушил его».

В этом случае мы наблюдаем поучительную картину: одни яды, вызывающие гемическую (кровяную) гипоксию, тормозят действие других ядов, тоже вызывающих гипоксию, но другого типа. Прямая иллюстрация русского идиоматического выражения: «вышибать клин клином». Главное - не переборщить с метгемоглобинобразователем, чтобы не поменять шило на мыло. Содержание метгемоглобина в крови не должно превышать 25–30% от общей массы гемоглобина. В отличие от глюкозы или тиосульфата метгемоглобин не просто связывает цианид-ионы, циркулирующие в крови, но и помогает «испорченному» цианидами дыхательному ферменту освободиться от цианид-ионов. Это происходит благодаря тому, что процесс соединения цианид-ионов с цитохромоксидазой обратим. Под действием метгемоглобина уменьшается концентрация этих ионов в плазме крови - а в результате новые цианид-ионы отщепляются от комплексного соединения с цитохромоксидазой.

Реакция образования цианметгемоглобина тоже обратима, поэтому со временем цианид-ионы снова поступают в кровь. Чтобы связать их, одновременно с антидотом (обычно нитритом) в кровь вводят раствор тиосульфата. Наиболее эффективна смесь нитрита натрия с тиосульфатом натрия. Она способна помочь даже на последних стадиях отравления цианидами - судорожной и паралитической.

Где с ним можно встретиться?

Имеет ли шанс обычный человек, не герой детективного романа, отравиться цианидом калия или синильной кислотой? Как любые вещества первого класса опасности, цианиды хранятся с особыми предосторожностями и недоступны рядовому злоумышленнику, если только он не сотрудник специализированной лаборатории или цеха. Да и там подобные вещества на строгом учете. Однако отравление цианидами может произойти и без участия злодея.

Во-первых, цианиды встречаются в природе. Цианид-ионы входят в состав витамина В 12 (цианокоболамина). Даже в плазме крови здорового человека на 1 л приходится 140 мкг цианид-ионов. В крови курящих людей содержание цианидов в два с лишним раза больше. Но такие концентрации организм переносит безболезненно. Другое дело, если с пищей поступят цианиды, содержащиеся в некоторых растениях. Тут возможно серьезное отравление. В ряду источников синильной кислоты, доступных каждому, можно назвать семена абрикосов, персиков, вишен, горького миндаля. В них содержится гликозид амигдалин.

Амигдалин принадлежит к группе цианогенных гликозидов, образующих при гидролизе синильную кислоту. Этот гликозид был выделен из семян горького миндаля, за что и получил свое название (греч. μ - «миндаль»). Молекула амигдалина, как и положено гликозиду, состоит из сахаристой части, или гликона (в данном случае это остаток дисахарида генцибиозы), и несахаристой части, или агликона. В остатке генцибиозы, в свою очередь, гликозидной связью связаны два остатка β-глюкозы. В роли агликона выступает циангидрин бензальдегида - манделонитрил, вернее, его остаток, связанный с гликоном гликозидной связью.

При гидролизе молекула амигдалина распадается на две молекулы глюкозы, молекулу бензальдегида и молекулу синильной кислоты. Это происходит в кислой среде или под действием фермента эмульсина, содержащегося в косточке. Из-за образования синильной кислоты один грамм амигдалина - смертельная доза. Это соответствует 100 г ядрышек абрикосовых косточек. Известны случаи отравления детей, съевших по 10–12 косточек абрикоса.

В горьком миндале содержание амигдалина в три - пять раз выше, но есть его косточки вряд ли захочется. В крайнем случае следует подвергнуть их нагреванию. При этом разрушится фермент эмульсин, без которого гидролиз не пойдет. Именно благодаря амигдалину семена горького миндаля имеют свой горький вкус и миндальный запах. Точнее, миндальный запах имеет не сам амигдалин, а продукты его гидролиза - бензальдегид и синильная кислота (запах синильной кислоты мы уже обсуждали, а вот запах бензальдегида, без сомнения, миндальный).

Во-вторых, отравление цианидами может произойти на производстве, где они используются для создания гальванических покрытий или для извлечения благородных металлов из руд. Ионы золота и платины образуют с цианид-ионами прочные комплексные соединения. Благородные металлы не способны окисляться кислородом, потому что их оксиды непрочны. Но если кислород действует на эти металлы в растворе цианида натрия или калия, то образующиеся при окислении ионы металла связываются цианид-ионами в прочный комплексный ион и металл полностью окисляется. Сам цианид натрия благородных металлов не окисляет, но помогает окислителю осуществить его миссию:

4Au + 8NaCN + 2H 2 O = 4Na + 4NaOH.

Рабочие, занятые в таких производствах, испытывают хроническое воздействие цианидов. Цианиды ядовиты и при попадании в желудок, и при вдыхании пыли и брызг при обслуживании гальванических ванн, и даже при попадании на кожу, особенно если на ней есть ранки. Недаром доктор Лазоверт надевал резиновые перчатки. Был случай смертельного отравления горячей смесью, содержащей 80% которая попала рабочему на кожу.

Даже не занятые в горно-обогатительном или на гальваническом производстве люди могут пострадать от цианидов. Известны случаи, когда в реки попадали сточные воды таких производств. В 2000, 2001 и 2004 году Европа была встревожена выбросами цианидов в воды Дуная на территории Румынии и Венгрии. Это приводило к тяжелым последствиям для обитателей рек и жителей прибрежных поселков. Отмечались случаи отравления рыбой, выловленной в Дунае. Поэтому нелишне знать меры предосторожности при обращении с цианидами. И читать в детективах про цианистый калий будет интереснее.

Список используемой литературы:
Азимов А. Химические агенты жизни. М.: Издательство иностранной литературы, 1958.
Вредные химические вещества. Справочник. Л.: Химия, 1988.
Катаев В. Разбитая жизнь, или Волшебный рог Оберона. М.: Советский писатель, 1983.
Оксенгендлер Г. И. Яды и противоядия. Л.: Наука, 1982.
Роуз С. Химия жизни. М.: Мир, 1969.
Энциклопедия для детей «Аванта+». Т.17. Химия. М.: Аванта+, 2001.
Юсупов Ф. Мемуары. М.: Захаров, 2004.

В 1945 году был издан роман «Сверкающий цианид» Агаты Кристи. Детектив получился увлекательным и интересным. Однако далеко не все знают, что подобного цианида не существует. Так что же собой представляет это вещество и как оно влияет на организм человека?

Что такое цианид?

Цианиды - это класс быстродействующих веществ, которые оказывают пагубное воздействие на организм человека. Иными словами, это яды. Их токсичность легко объяснить негативным воздействием некоторых их составляющих на В свою очередь, нарушается работа всего организма. Клетки просто перестают функционировать. После этого важные системы организма перестают выполнять свои функции, и возникает патологическое тяжелое состояние, которое чаще всего заканчивается летальным исходом.

Так что такое цианид? Прежде всего, это производные синильной кислоты. Формула достаточно проста: KCN. Впервые это вещество было получено немецким химиком Робертом Вильгельмом Бунзеном. Помимо этого, ученый разработал еще и промышленные способы его синтеза. Произошло это в 1845 году.

Некоторые свойства вещества

Цианид калия представляет собой порошок белого цвета с кристаллической структурой. Вещество прекрасно растворяется в воде. Яд обладает своеобразным запахом, однако почувствовать его могут около 50 % населения нашей планеты. Стоит отметить, что цианид калия является неустойчивым веществом. Оно окисляется в растворах, содержащих глюкозу, и при достаточном уровне влажности.

Также нередко встречается и цианид натрия. Формула этого вещества: NaCN. Цианид натрия представляет собой белый пластилин, порошок, пасту или гигроскопические кристаллы. Вещество также неустойчивое. Оно быстро растворяется в ментоле и в воде. Сам по себе цианид натрия не горюч. Однако при контакте с влажным воздухом вещество выделяет газ, который легко воспламеняется. При горении цианид натрия выделяет токсические и раздражающие пары. Они способны вызвать серьезное отравление. Также летучие вещества образует и гидролиз цианидов.

Цианид в растениях

Что такое цианид, разобрались. Но как его получают и для чего? Цианиды производятся не только синтетическим путем. Эти вещества встречаются и в природе. Это повышает риск намеренного или же случайного отравления. Яд можно получить из определенных продуктов питания и растений. Именно по этой причине следует знать все источники цианида.

В список опасных продуктов входит бобы Лимы, миндаль и маниока. Помимо этого, цианид содержится в косточках груши, сливы, абрикоса, вишни, персика и даже яблок. Отравление же наступает только в тех случаях, когда в организм поступает чрезмерное количество опасных продуктов. В группе риска находятся те люди, у которых имеется индивидуальная непереносимость.

Применение цианида

Растворы цианидов применяются во многих отраслях промышленности. Эти вещества обычно используют для изготовления бумаги, пластмассы и некоторых разновидностей текстиля. Как правило, яд присутствует во многих реактивах, которые используются для проявления фотографий. В металлургии рассматриваемое нами вещество задействуют для очистки гальваники и металлов, а также для выделения из руд золота.

Помимо этого, цианид используется в виде газа в сочетании с другими веществами с целью обеззараживания хранилищ с зерном. Подобные составы позволяют уничтожить грызунов.

Влияние на организм

При попадании цианида в живой организм происходит блокировка особого фермента - цитохромоксидаза. В результате ткани недополучают необходимое количество кислорода. Это приводит к развитию асфиксии.

Прежде всего, гипоксия тканей затрагивает головной мозг. В результате развивается паралич ЦНС. Все это приводит к быстрому Что касается симптомов отравления, то они возникают практически моментально.

Тяжесть состояния больного зависит в первую очередь от того, каким путем яд попал в организм. При вдыхании паров и газов отравление наступает мгновенно. Крайне редко цианид проникает через кожные покровы и желудочно-кишечный тракт. В таких случаях симптомы отравления могут проявляться постепенно.

Когда проявляются признаки отравления

Как уже было сказано, признаки отравления и степень их проявления зависят от того, каким путем яд попал в организм и в каком количестве. Для человека смертельная доза цианида составляет всего лишь 0,1 мг/л. Смерть наступает в течение часа. Если же в организм попало 0,12-0,15 мг/л, то человек умирает за полчаса.

Если же концентрация ядовитого вещества увеличена до 0,2 мг, то летальный исход наступает уже через 10 минут. Стоит учесть, что человек способен выдержать отравление цианидом при определенных условиях. Это возможно, если концентрация не превышает 0,55 мг/л и воздействует яд не более одной минуты.

Если цианид проник в организм вместе с газом, то симптомы наблюдаются спустя пару секунд. Если же отравляющее вещество попало через желудок, клиническая картина развивается спустя несколько минут.

Основные симптомы отравления

Цианид - яд, который начинает действовать сразу, как только попал в организм человека. При высоких дозировках отравляющего вещества симптомы отравления проявляются моментально. Вот основные признаки:

  1. Прежде всего пострадавший теряет сознание.
  2. Мгновенно наступает паралич системы органов дыхания. Помимо этого, блокируется работа сердечных мышц.
  3. Летальный исход.

При незначительных дозировках симптомы возникают постепенно:

  1. Для начальной стадии отравления цианидами характерно головокружение, острая и быстро нарастающая головная боль, учащенное сердцебиение и дыхание, ощущение тяжести в лобных долях,
  2. Вторая стадия - одышка. При этом дыхание становится шумным, глубоким и редким. Пульс у пострадавшего замедляется, возникает тошнота, рвота, расширяются зрачки.
  3. На следующей стадии человек теряет сознание. Нередко тетанические судороги вызывают спазмы жевательной мускулатуры, что может закончиться прикусыванием языка.
  4. Следующая стадия - паралич. Пострадавший утрачивает не только рефлексы, но и чувствительность. Дыхание очень редкое. Помимо этого, возможно непроизвольное опорожнение кишечника и мочеиспускание. Если не оказать пострадавшему первую помощь, то сердечная деятельность прекратится и наступит смерть.

В завершение

Теперь вы знаете, что такое цианид и как он воздействует на организм человека. Увы, не всегда это вещество применялось в мирных целях. во время Второй мировой войны входил в состав такого отравляющего газа, как «Циклон-Б». Это оружие широко применялось немецкими войсками. Также существует мнение, что этот отравляющий газ использовался и в 1980 году в период войны между Ираном и Ираком.

Цианид калия - яд, имеющий самую дурную славу. Свою известность он получил благодаря авторам детективных романов, которые часто «использовали» это ядовитое вещество в своих произведениях. Однако в природе существуют яды, действующие гораздо быстрее и эффективнее цианистого калия. Очевидно, известность этого вещества обусловлена еще и доступностью приобретения на рубеже XIX-XX веков, когда его можно было легко приобрести в любой аптеке. Но что такое цианиды сегодня? Какие виды отравляющих веществ из этого семейства существуют? Где их используют и можно ли получить отравление этим ядом в наши дни? Именно об этих вопросах и пойдет речь в данной статье.

Что это такое

Цианистый калий - это химическое соединение, производное от синильной кислоты. Формула цианида - KCN. Данное вещество впервые было получено шведским химиком Карлом Вильгельмом Шееле в 1782 году, а в середине XIX столетия немецкий химик Роберт Вильгельм Бунзен разработал методику промышленного синтезирования яда. Предполагалось, что использоваться это вещество будет отнюдь не для целей убийства себе подобных, а для борьбы с сельскохозяйственными вредителями и в кожевенном производстве. Производные синильной кислоты часто применялись в качестве красящего пигмента в красках.

Тем не менее в начале XX французские военные впервые применили цианиды как химическое оружие. Несмотря на то что газовая атака в боях на берегах Сены не принесла ожидаемого результата, некоторые немецкие ученые рассмотрели «перспективы» использования цианидов в проведении военных действий. В ходе Второй мировой войны нацисты уже широко использовали более усовершенствованные модификации отравляющих веществ, созданных на основе цианидов, в концлагерях и на некоторых участках фронта.

Виды цианидов

Что такое цианистый калий и какое влияние он оказывает на человеческий организм, наверное, знает большинство людей. Однако мало кто знает, что ядовитое семейство может содержать как органические, так и неорганические цианиды.

Первую группу преимущественно используют в фармакологии и сельском хозяйстве (в борьбе с вредоносными насекомыми). Вторая группа нашла широкое применение в химической промышленности и печати фотографий, кожевенном и текстильном производстве, а также в горнодобывающем и гальваническом производстве.

Как выглядит

Люди, знающие, что такое цианид, описывают его как полупрозрачный порошок с кристаллической структурой. Это вещество полностью растворяется в воде. Однако из-за того, что более сильные кислоты способны легко вытеснить синильную кислоту из соединения, данное ядовитое вещество считается крайне неустойчивым соединением. В результате происходящих реакций элементы цианогруппы CN улетучиваются, поэтому исходное соединение теряет свои ядовитые свойства. Отрицательное воздействие на отравляющее действие может оказать влажный воздух.

Запах

Считается, что цианид калия обладает специфическим запахом прогорклого миндаля, однако, далеко не все люди способны его уловить. Так происходит из-за индивидуальных особенностей обонятельного аппарата каждого человека.

Где встречается цианид

Что такое цианид в природе и где его можно встретить? В чистом виде цианистого калия в природе не бывает, однако, ядовитые соединения цианогрупп - амигдалины, можно найти в абрикосовых, вишневых, персиковых и сливовых косточках. Их можно встретить в миндале. Листья и побеги бузины также содержат амигдалин.

Опасность для человеческого организма при употреблении данных продуктов, представляет синильная кислота, образующаяся в процессе расщепления амигдалина. Смерть может наступить после употребления всего одного грамма вещества, что соответствует примерно 100 граммам ядер косточек абрикоса.

В быту цианид можно обнаружить в реактивах, используемых в фотолабораториях, а также в препаратах для чистки драгоценностей. Некоторое количество этого вещества применяют в ловушках для насекомых. Цианиды добавляются в художественные краски, имеющие лазурные оттенки. Благодаря взаимодействию с железом, также входящим в состав гуаши и акварелей, они дают глубокий синий цвет.

Риск отравлений

Соли синильной кислоты и цианиды - очень токсичные вещества, которые могут вызвать тяжелейшие формы отравлений. Наибольшая вероятность получить отравление от действия цианида имеется у людей, работающих на горнодобывающих и горно-обогатительных приисках и в гальванических цехах. Здесь цианиды калия или натрия используют в технологических процессах, когда металлы подвергаются катализации.

Риск получить отравление подобными ядовитыми веществами есть и у людей, находящихся в зоне токсических выбросов с этих предприятий. Так, на территории Румынии и Венгрии в начале 2000 годов в результате случайных выбросов с горно-обогатительных предприятий в реку Дунай пострадали жители окрестностей поймы.

В группу риска получить токсические отравления цианидами попадают сотрудники специальных лабораторий, в которых эти вещества используются в качестве реактивов.

Воздействие на человека

Под влиянием яда происходит блокирование клеточного фермента - цитохромоксидаза, который отвечает за усвоение в клетке кислорода. В результате клетки наполнены кислородом, но усвоить его не могут. Это приводит к тому, что в организме происходит нарушения жизненно важных обменных процессов. Эффект подобного воздействия равносилен удушью.

Цианиды ядовиты при попадании вовнутрь с пищей или водой, отравление можно получить в результате вдыхания паров раствора. Цианиды могут проникнуть через поврежденную кожу.

Даже в незначительных количествах они крайне опасны для здоровья живых организмов. Из-за высокой токсичности использование этих препаратов контролируется с особой строгостью.

Симптомы отравления

Легкая форма отравления цианидами сопровождается першением в горле, головокружением, слюнотечением, рвотой и панической атакой. При более тяжелых формах усиливается горечь во рту, появляются сердечные боли, человек теряет сознание, начинаются судороги и паралич дыхательных путей. Тяжелые отравления обычно сопровождаются неконтролируемым недержанием мочи и опорожнением кишечника, чрезмерным покраснением кожных покровов и слизистых. После этих проявлений наступает смерть.

Оказание первой помощи

Для оказания адекватной помощи необходимо в первую очередь установить, каким образом яд мог попасть в организм пострадавшего. Если отравление произошло через кожу, то необходимо сменить одежду, на которой, скорее всего, остались частицы отравляющего вещества. Самого пострадавшего необходимо обтереть мыльной водой.

Если яд попал в организм вместе с продуктами питания, то в первую очередь необходимо вызвать рвоту и промыть желудок. Для этого нужно выпить большое количество воды с добавлением перманганата калия (марганцовки) или пищевой соды. После промывания желудка пострадавшему дают любой сладкий напиток. Чтобы облегчить симптомы отравления, пострадавшего необходимо вывести на свежий воздух.

В случае если пострадавший находится без сознания, необходимо следить за его сердцебиением и дыханием. При отсутствии дыхания нужно провести искусственное дыхание. Однако человеку, проводящему подобные мероприятия, следует исключить возможное отравление парами яда и обратиться за медицинской помощью.

В любом случае необходимо вызвать скорую помощь. Только медицинский работник, имеющий специальное образование и опыт, может предпринять адекватные меры лечения. Приехавшим медикам необходимо сообщить, что причина отравления - синильная кислота. В этом случае врач внутривенно введет противоядие - тиосульфат натрия. Антидот способствует снижению вредоносного воздействия яда. При необходимости доктор примет реанимирующие меры и госпитализирует пострадавшего для последующего лечения.

Антидоты

Смертельной дозой для человека считается 17 мг на один килограмм общего веса тела. Летальный исход наступает всего через несколько минут после попадания достаточного количества яда в организм. Однако это количество считается условным. Степень отравления зависит от способа попадания, физических особенностей человека и употребляемой пищи. При регулярном попадании в организм незначительных доз яда цианида отравление наступает постепенно, в течение длительного времени.

Доказано, что при попадании цианиды в организм, своеобразным антидотом к отравляющему свойству вещества является обычная глюкоза. Сахар способствует мгновенному окислению соединений синильной кислоты и солей калия. Поэтому люди, контактирующие с ядовитыми соединениями, обычно имеют при себе несколько кусочков сахара. При первых же симптомах отравления, они его съедают, чтобы нейтрализовать действие ядовитых соединений.

ВВЕДЕНИЕ 2

Цианиды - соли цианистоводородной (синильной) кислоты. В номенклатуре IUPAC к цианидам относят также C-производные синильной кислоты - нитрилы. К цианидам относится большая группа химических соединений, производных синильной (цианистой) кислоты. Все они содержат цианогруппу - СN. Различают неорганические цианиды (синильная кислота, цианиды натрия и калия, дициан, хлорциан, бромциан, цианид кальция) и органические цианиды (эфиры цианмуравьиной и циануксусной кислот, нитрилы, тиоцианаты, гликозид-амигдалин и др.). 3

ПОЛУЧЕНИЕ ЦИАНИДОВ 3

ПРИМЕНЕНИЕ ЦИАНИДОВ 4

Органические цианиды применяются для борьбы с вредителями сельского хозяйства, в органических синтезах, фармацевтической промышленности и т.д. 4

ДЕЙСТВИЕ ЦИАНИДОВ НА ОРГАНИЗМ 6

МЕРЫ ПРИ ОТРАВЛЕНИИ ЦИАНИДАМИ 7

ЛЕЧЕНИЕ ОТРАВЛЕНИЯ 8

СИНИЛЬНАЯ КИСЛОТА (HCN) 9

ОТРАВЛЕНИЕ ЧЕЛОВЕКА СИНИЛЬНОЙ КИСЛОТОЙ 10

Действие на нервную систему 11

Действие на дыхательную систему 11

Действие на сердечно-сосудистую систему 12

Изменения в системе крови 12

СИМПТОМЫ ОТРАВЛЕНИЯ СИНИЛЬНОЙ КИСЛОТОЙ 13

ТОКСИЧНОСТЬ ЦИАНИДОВ ДЛЯ РАЗНЫХ ВИДОВ ЖИВОТНЫХ 14

ИНТЕРЕСНЫЕ ФАКТЫ 16

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 17

Введение

В настоящее время невозможно представить ни один вид человеческой деятельности, прямо или косвенно не связанный с влиянием на организм химических веществ, количество которых составляет десятки тысяч и продолжает непрерывно расти. В их числе – ядохимикаты (инсектициды, пестициды, гербициды), препараты бытового назначения (краски, лаки, растворители, синтетические моющие средства), лекарственные вещества, химические добавки к пищевым продуктам, косметические средства. Немаловажное значение в этой связи имеют биологически активные соединения растительного происхождения: алкалоиды, гликозиды, органические кислоты, многие из которых не разрушаются при высушивании, длительном хранении, термической обработке самих растений или мяса отравленных ими животных.

Еще одна группа ядов образуется в результате жизнедеятельности микроорганизмов. Микробные яды (например, ботулинический токсин) подчас в сотни раз превосходят высокотоксичные синтетические вещества по силе биологического действия. Надо иметь также в виду, что в природе есть много ядовитых существ: членистоногих, моллюсков, рыб, змей, которые могут стать опасными для человека.

Ведущие токсикологи с обоснованным беспокойством и тревогой отмечают, что бурное развитие химической промышленности, внедрение химической технологии во многие отрасли народного хозяйства и в сферу быта создают химическое загрязнение среды обитания и серьёзную угрозу здоровью населения, приводят к значительным экономическим потерям (заболевания и гибель животных, экологически связанных с человеком, например, рыб, ухудшение пищевых свойств сельскохозяйственных растений и многое другое).

ЧТО ТАКОЕ ЦИАНИДЫ Цианиды очень ядовиты. Цианиды в XX веке применялись как отравляющее вещество против людей и грызунов в сельском хозяйстве. В начале XX века синильная кислота использовалась французами как боевое отравляющее вещество (ОВ) как например хлорциан.

Цианиды - соли цианистоводородной (синильной) кислоты. В номенклатуре IUPAC к цианидам относят также C-производные синильной кислоты - нитрилы. К цианидам относится большая группа химических соединений, производных синильной (цианистой) кислоты. Все они содержат цианогруппу - СN. Различают неорганические цианиды (синильная кислота, цианиды натрия и калия, дициан, хлорциан, бромциан, цианид кальция) и органические цианиды (эфиры цианмуравьиной и циануксусной кислот, нитрилы, тиоцианаты, гликозид-амигдалин и др.).

ПОЛУЧЕНИЕ ЦИАНИДОВ

Основой способ получения цианидов щелочных металлов - взаимодействие соответствующего гидроксида с синильной кислотой, в частности, это основной промышленный метод получения наиболее крупнотоннажного цианида - цианида натрия. Другой промышленный метод получения цианида натрия - сплавление цианамида кальция с углем и хлоридом натрия либо содой:

CaCN 2 + C + 2 NaCl 2 NaCN + CaCl 2

Образующийся в процессе плав («цианплав», «чёрный цианид») содержит 40 - 47 % цианидов в пересчете на NaCN и используется для цианирования стали, а также использовался в качестве сырья для получения цианидов натрия, калия, а также желтой кровяной соли.

Прочие цианиды получают в основном реакциями обмена цианидов щелочных металлов с соответствующими солями.

Цианиды щелочных металлов также могут быть получены взаимодействием металла с дицианом:

N≡C-C≡N + 2Na 2NaCN

или из роданидов, нагревая их в присутствии железного порошка.

ПОРАЖЕНИЯ ОТРАВЛЯЮЩИМИ ВЕЩЕСТВАМИ ОБЩЕТОКСИЧЕСКОГО ДЕЙСТВИЯ: СИНИЛЬНОЙ КИСЛОТОЙ И ЦИАНИСТЫМ КАЛИЕМ


Синильная кислота и цианистый калий относятся к отравляющим веществам общетоксического действия, также как и натрий, хлорциан, бромциан, моноаксид углерода.
Впервые синильная кислота была синтезирована шведским ученым Карлом Шееле в 1782 г. Истории известны случаи применения цианидов для массового поражения людей. Французская армия использовала во время первой мировой войны (1916 г. на р. Сомме) синильную кислоту в качестве отравляющего вещества, в гитлеровских лагерях уничтожения фашисты (1943-1945г.) применяли ядовитые газы циклоны (эфиры цианмуравьиной кислоты), американские войска в Южном Вьетнаме (1963г.) использовали против мирного населения токсичные органические цианиды (газы типа СS). Известно также, что в США применяется смертная казнь посредством отравления осужденных парами синильной кислоты в специальной камере.
Благодаря высокой химической активности и способности взаимодействовать с многочисленными соединениями различных классов цианиды широко применяются во многих отраслях промышленности, сельского хозяйства, в научных исследованиях, и это создает немало возможностей для интоксикаций.
Так, синильная кислота и большое число ее производных используются при извлечении благородных металлов из руд, при гальванопластическом золочении и серебрении, в производстве ароматических веществ, химических волокон, пластических масс, каучука, органического стекла, стимуляторов роста растений, гербицидов. Цианиды применяются также в качестве инсектицидов, удобрений и дефолиантов. Синильная кислота выделяется в газообразном состоянии при многих производственных процессах. Могут быть и отравления цианидами вследствие употребления в пищу большого количества семян миндаля, персика, абрикоса, вишни, сливы и других растений семейства розовоцветных или настоек из их плодов. Оказалось, что все они содержат гликозид амигдалин, который в организме под влиянием фермента эмульсина разлагается с образованием синильной кислоты, бензальдегида и 2-х молекул глюкозы. Наибольшее количество амигдалина содержится в горьком миндале (до 3%) и семенах абрикоса (до 2%).
Физико-химические свойства и токсичность синильной кислоты
Синильная кислота - HCN - представляет собой бесцветную, легко кипящую (при 26оС) жидкость, обладающую запахом горького миндаля, с удельным весом 0,7, замерзает при - 13,4 С. Отравление цианидами развивается при вдыхании паров отравляющего вещества, при поступлении через кожу и через рот. В военное время наиболее вероятным является ингаляционный путь поступления их в организм. По данным ВОЗ, Lt50 синильной кислоты - 2 г/мин/м3. При отравлении через рот смертельными дозами для человека являются: HCN - 1 мг/кг, KCN - 2,5 мг/кг; NaСN - 1,8 мг/кг.
Механизм токсического действия
Механизм действия синильной кислоты изучен довольно подробно. Она является веществом, вызывающим кислородное голодание тканевого типа. При этом наблюдается высокое содержание кислорода как в артериальной, так и в венозной крови и уменьшение таким образом артерио-венозной разницы, резкое понижение потребления кислорода тканями с уменьшением образования в них углекислоты.
Установлено, что цианиды вмешиваются в окислительно-восстановительные процессы в тканях, нарушая активацию кислорода цитохромоксидазой. (Лектор может более подробно остановиться на современных представлениях клеточного дыхания).
Синильная кислота и ее соли, растворенные в крови, достигают тканей, где вступают во взаимодействие с трехвалентной формой железа цитохромоксидазы. Соединившись с цианидом, цитохромксидаза утрачивает способность переносить электроны на молекулярный кислород. Вследствии выхода из строя конечного звена окисления блокируется вся дыхательная цепь и развивается тканевая гипоксия. Кислород доставляется к тканям в достаточном количестве с артериальной кровью, но ими не усваивается и переходит в неизмененном виде в венозное русло. Одновременно нарушаются процессы образования макроэргов, необходимых для нормальной деятельности различных органов и систем. Активизируется гликолиз, то есть обмен с аэробного перестраивается на анаэробный. Также подавляется активность и других ферментов - каталазы, пероксидазы, лактатдегидрогеназы.
Влияние цианидов на различные органы и системы
Действие на нервную систему . В результате тканевой гипоксии, развивающейся под влиянием синильной кислоты, в первую очередь нарушаются функции центральной нервной системы. Цианиды в токсических дозах вызывают в начале возбуждение центральной нервной системы, а затем ее угнетение. В частности, в начале интоксикации наблюдается возбуждение дыхательного и сосудодвигательного центров. Это проявляется подъемом артериального давления и развитием выраженной одышки. Крайней формой возбуждения центральной нервной системы являются клонико-тонические судороги. Выраженное возбуждение нервной системы сменяется параличом (дыхательного и сосудодвигательного центров).
Действие на дыхательную систему . В картине острого отравления наблюдается резко выраженное увеличение частоты и глубины дыхания. Развивающуюся одышку, видимо, следует рассматривать как компенсаторную реакцию организма на гипоксию. Стимулирующее действие цианидов на дыхание обусловлено возбуждением хеморецепторов каротидного синуса и непосредственным действием яда на клетки дыхательного центра. Первоначальное возбуждение дыхания по мере развития интоксикации сменяется его угнетением вплоть до полной остановки. Причинами этих нарушений являются тканевая гипоксия и истощение энергетических ресурсов в клетках каротидного синуса и в центрах продолговатого мозга.
Действие на сердечно-сосудистую систему . В начальном периоде интоксикации наблюдается замедление сердечного ритма. Повышение артериального давления и увеличение минутного объема сердца происходят за счет возбуждения цианидами хеморецепторов каротидного синуса и клеток сосудодвигательного центра, с одной стороны, выброса катехоламинов из надпочечников и вследствие этого спазма сосудов - с другой. По мере развития отравления артериальное давление падает, пульс учащается, развивается острая сердечно-сосудистая недостаточность и наступает остановка сердца.
Изменения в системе крови . Содержание в крови эритроцитов увеличивается, что находит объяснение в рефлекторном сокращении селезенки в ответ на развивающуюся гипоксию. Цвет венозной крови становится ярко-алым за счет избыточного содержания кислорода, не поглощенного тканями. Артерио-венозная разница по кислороду резко уменьшается. При угнетении тканевого дыхания изменяется как газовый, так и биохимический состав крови. Содержание СО2 в крови снижается вследствие меньшего образования и усиленного ее выделения при гипервентиляции. Это приводит в начале развития интоксикации к газовому алкалозу, который меняется метаболическим ацидозом, что является следствием активации процессов гликолиза. В крови накапливаются недоокисленные продукты обмена. Увеличивается содержание молочной кислоты, нарастает содержание ацетоновых тел,отмечается гипергликемия. Нарушением окислительно-восстановительных процессов в тканях объясняется развитие гипотермии. Таким образом, синильная кислота и ее соли вызывают явления тканевой гипоксии и связанные с ней нарушения дыхания, кровообращения, обмена веществ, функции центральной нервной системы, выраженность которых зависит от тяжести интоксикации.
КЛИНИЧЕСКАЯ КАРТИНА ОТРАВЛЕНИЯ ЦИАНИДАМИ
Отравление цианидами характеризуется ранним появлением признаков интоксикации, быстрым развитием явлений кислородного голодания, преимущественным поражением ЦНС и вероятным летальным исходом в короткие сроки.
Различают молниеносную и замедленную формы. При поступлении яда в организм в большом количестве смерть может наступить почти мгновенно. Пораженный сразу теряет сознание, дыхание становится частым и поверхностным, пульс учащается, аритмичен, возникают судороги. Судорожный период непродолжителен, происходит остановка дыхания и наступает смерть. При замедленной форме развитие отравления может растягиваться во времени и протекать в различных вариантах.
Легкая степень отравления характеризуется главным образом субъективными расстройствами: раздражением верхних дыхательных путей, конъюнктивы глаз, неприятным жгуче-горьким вкусом во рту, ощущается запах горького миндаля, появляется слабость, головокружение. Несколько позже возникает ощущение онемения слизистой рта, слюнотечение и тошнота. При малейших физических усилиях появляется одышка и сильная мышечная слабость, шум в ушах, затруднение речи, возможна рвота. После прекращения действия яда все неприятные ощущения ослабевают. Однако в течение нескольких дней могут оставаться головные боли, мышечная слабость, тошнота и чувство общей разбитости. При легкой степени интоксикации наступает полное выздоровление.
При интоксикации средней степени вначале отмечаются описанные выше субъективные расстройства, а затем возникает состояние возбуждения, появляется чувство страха смерти. Слизистые и кожа приобретают алую окраску, пульс урежен и напряжен, артериальное давление повышается, дыхание становится поверхностным, могут возникать непродолжительные клонические судороги. При своевременном оказании помощи и удалении из зараженной атмосферы отравленный быстро приходит в сознание. В последующие 3-6 дней отмечается разбитость, недомогание, общая слабость, головная боль, неприятные ощущения в области сердца, тахикардия, неспокойный сон.
В клинической картине тяжелой интоксикации выделяют четыре стадии: начальную, диспноэтическую, судорожную и паралитическую. Начальная стадия характеризуется в основном субъективными ощущениями, изложенными выше при описании отравлений легкой степени. Он кратковременна и переходит в следующую. Для диспноэтической стадии типичными являются некоторые признаки кислородного голодания тканевого типа: алый цвет слизистых и кожныхпокровов, постепенно нарастающая слабость, общее беспокойство, неприятные ощущения в области сердца. У отравленного появляется чувство страха смерти, расширяются зрачки, урежается пульс, дыхание становится частым и глубоким. В судорожной стадии состояние пораженного резко ухудшается. Сознание утрачивается, роговичный рефлекс вялый, зрачки на свет не реагируют. Появляется экзофтальм, дыхание становится аритмичным, редким, повышается артериальное давление, частота пульса уменьшается. Возникают распространенные клонико-тонические судороги. Сохраняется алая окраска кожных покровов и слизитых. Длительность этой стадии может варьировать от нескольких минут до нескольких часов. При дальнейшем ухудшении состояния пораженного развивается паралитическая стадия. Судороги к этому времени прекращаются, однако у больного констатируется глубокое коматозное состояние с полной утратой чувствительности и рефлексов, мышечной адинамией, возможны непроизвольное мочеиспускание и дефекация. Дыхание редкое, неритмичное. Затем наступает полная остановка дыхания, пульс учащается, становится аритмичным, кровяное давление падает и спустя несколько минут прекращается сердечная деятельность.
Последствия и осложнения характерны для тяжелых интоксикаций. В течение нескольких недель после перенесенного поражения могут сохраняться стойкие и глубокие изменения неврно-психической сферы. Как правило в течение 10-15 дней сохрняется астенический синдром. Пациенты жалуются н повышенную утомляемость, снижение работоспособности,головную боль, плохой сон. Могут наблюдаться нарушения двигательной координации, стойкие расстройства мозжечкового характера, парезы и параличи различных мышечных групп, затруднение речи, нарушение психики. Из со-
матических осложнений на первом месте находится пневмония. Ее возникновению способствует аспирация слизи, рвотных масс, длительное пребывание больных в лежачем положении. Изменения наблюдаются и в сердечно-сосудистой системе. В течение 1-2 недель отмечаются неприятные ощущения в области сердца, единичные экстрасистолы, тахикардия, лабильность пульса и показателей АД, прослеживаются изменения ЭКГ (признаки коронарной недостаточности).
ДИАГНОСТИКА ОТРАВЛЕНИЯ СИНИЛЬНОЙ КИСЛОТОЙ
Диагноз поражения синильной кислотой базируется на следующих признаках: внезапность появления симптомов поражения, последовательность развития и быстротечность клинической картины, запах горького миндаля в выдыхаемом воздухе, алая окраска кожных покровов и слизитых, широкие зрачки и экзофтальм.
ЛЕЧЕНИЕ ОТРАВЛЕНИЙ СИНИЛЬНОЙ КИСЛОТОЙ
Эффект помощи отравленным цианидами зависит от быстроты применения антидотов и средств, нормализующих функции жизненно важных органов и систем.
Антидотными свойствами обладают метгемоглобинообразующие вещества, вещества, содержащие серу и углеводы. К метгемоглобинообразователям относятся антициан, амилнитрит, азотистокислый натрий, метиленовый синий. Они окисляют железо гемоглобина, превращая его в метгемоглобин. Метгемоглобин, содержащий трехвалентное железо, способен конкурировать с цитохромоксидазой за цианид. Следует иметь в виду, что метгемоглобин не способен связываться с кислородом, поэтому необходимо применять строго определенные дозы этих средств, так как при инактивации гемоглобина более чем на 25-30% развивается гемическая гипоксия. Метгемоглобин связывает в первую очередь цианид, растворенный в крови. При снижении концентрации цианида в крови создаются условия для восстановления активности цитохромоксидазы и нормализации тканевого дыхания. Это обусловлено обратным током цианида из тканей в кровь - в сторону меньшей его концентрации. Образованный комплекс циан-метгемоглобин - соединение непрочное. Через 1-1,5 часа этот комплекс начинает постепенно распадаться с образованием гемоглобина и цианида. Поэтому возможен рецидив интоксикации. Однако процесс диссоциации растянут во времени, что дает возможность обезвреживания яда другими антидотами.
Табельный антидот из группы метгемоглобинобразователей - антициан.
При отравлении синильной кислотой первое введение антициана в виде 20% раствора производится в объеме 1.0 мл внутримышечно или 0,75 мл внутривенно. При внутривенном введении препарат разводят в 10 мл 25-40% раствора глюкозы или физиологического раствора, скорость введения 3 мл в минуту. При необходимости через 30 мин. антидот может быть введен повторно в дозе 1.0 мл, но только внутримышечно. Еще через 30-40 мин. можно провести третье введение в той же дозе, если к этому есть показания.
Мощным метгемоглобинообразователем является нитрит натрия. Водные растворы препарата готовятся ex tempore, так как при хранении они нестойки. При оказании помощи отравленным нитрит натрия вводят внутривенно медленно в виде 1-2% раствора в объеме 10-20 мл.
Метгемоглобинообразующим эффектом обладает амилнитрит, пропилнитрит. Частичным метгемоглобинообразующим действием обладает метиленовый синий.
Вещества, содержащие серу. При взаимодействии веществ, содержащих серу,с цианидом образуются нетоксичные роданистые соединения. Наиболее эффективным из донаторов серы оказался тиосульфат натрия. Вводится внутривенно по 20-50 мл 30% раствора. Он надежно обезвреживает ОВ. Недостатком является относительно медленное действие.
Следующая группа антидотов обладает свойством превращать циан в нетоксичные циангидрины. Это свойство наблюдается у углеводов. Выраженным антитоксическим действием обладает глюкоза, которую рекомендуется вводить в дозе 30-50 мл 25% раствора. Кроме того, глюкоза оказывает благоприятное действие на дыхание, функцию сердца и увеличивает диурез.
Антидотный эффект наблюдается при применении солей кобальта, которые при взаимодействии с цианидами приводят к образованию нетоксичных циан-кобальтовых соединений.
Эффект антидотов усиливается при их использовании на фоне оксигенобаротерапии. Показано, что кислород под давлением способствует более быстрому восстановлению активности цитохромоксидазы.
Имеются сведения о благоприятном лечебном эффекте унитиола, который не являясь донаторами серы, активирует фермент родоназу, и таким образом ускоряет процесс детоксикации. Поэтому целесообразно наряду с донаторами серы вводить унитиол.
Антидотная терапия при поражениях синильной кислотой, как правило, проводится комбинировано: вначале применяются метгемоглобинообразователи, затем донаторы серы и вещества, способствующие образованию циангидринов.
Кроме применения антидотных средств необходимо проведение всех общих принципов лечения отравленных (удаление невсосавшегося и всосавшегося яда,предупреждение дальнейшего поступления яда в органы - методом форсированного удаления, симптоматическая терапия, реанимационные мероприятия).
ЭТАПНОЕ ЛЕЧЕНИЕ
Отравление развивается быстро, поэтому медицинская помощь носит характер неотложной.
Первая медицинская помощь в очаге включает в себя надевание противогаза на отравленного. Затем осуществляется эвакуация за пределы очага. Пораженные в бессознательном состоянии и судорожной стадии интоксикации нуждаются в эвакуации лежа.
Доврачебная помощь проводится вне очага, что позволяет снять противогаз. Вводится антициан - 1 мл внутримышечно, при необходимости кордиамин, ИВЛ.
Первая врачебная помощь. Повторно вводится антициант. Если не назначался на этапе доврачебной помощи, желательно первое введение провести внутривенно на 10 мл 25-40% раствора глюкозы. В последующем внутривенно вводится 20-50 мл 30% раствора тиосульфата натрия. По показаниям применяют внутримышечно по 2 мл раствора этимизола и кордиамина, ИВЛ.
Дальнейшая эвакуация производится только после устранения судорог и нормализации дыхания. В пути следования необходимо предусмотреть оказание помощи при рецидивах интоксикации.
Квалифицированная терапевтическая помощь состоит в проведении прежде всего неотложных мероприятий: повторное введение антидотов (антициан, тиосульфат натрия, глюкоза), инъекции кордиамина, этимизола, ИВЛ (аппаратным методом). Отсроченные мероприятия квалифицированной терапевтической помощи включают введение антибиотиков, сульфаниламидов, десенсибилизирующих средств, витаминов.
Пораженные в коматозном и судорожном состоянии нетранспортабельны. Эвакуация тяжелопораженных проводится в ВПТГ, при наличии неврологических расстройств - в ВПНГ, перенесшие легкую интоксикацию остаются в омедб (ОМО).
Специализированная помощь оказывается в соответствующих госпиталях терапевтического профиля (ВПТГ, ВПНГ) в полном объеме. По окончании лечения реконвалесценты переводятся в ВПГРЛ, при наличии стойких изменений со стороны нервной, сердечно-сосудистой, дыхательной систем больные подлежат направлению на ВВК.

 

Возможно, будет полезно почитать: